Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(galois theory)`

.
Showing records 1 – 30 of
110 total matches.

Search Limiters

Dates

- 2016 – 2020 (23)
- 2011 – 2015 (46)
- 2006 – 2010 (23)

Degrees

- PhD (28)
- Docteur es (11)

▼ Search Limiters

Oregon State University

1. Brown, Robert Wallace. Solvability of equations by radicals.

Degree: MS, Mathematics, 1952, Oregon State University

URL: http://hdl.handle.net/1957/11686

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brown, R. W. (1952). Solvability of equations by radicals. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/11686

Chicago Manual of Style (16^{th} Edition):

Brown, Robert Wallace. “Solvability of equations by radicals.” 1952. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/11686.

MLA Handbook (7^{th} Edition):

Brown, Robert Wallace. “Solvability of equations by radicals.” 1952. Web. 29 Nov 2020.

Vancouver:

Brown RW. Solvability of equations by radicals. [Internet] [Masters thesis]. Oregon State University; 1952. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/11686.

Council of Science Editors:

Brown RW. Solvability of equations by radicals. [Masters Thesis]. Oregon State University; 1952. Available from: http://hdl.handle.net/1957/11686

Oregon State University

2.
Danielson, Lynda Major.
The *galois* *theory* of iterated binomials.

Degree: PhD, Mathematics, 1995, Oregon State University

URL: http://hdl.handle.net/1957/16688

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Danielson, L. M. (1995). The galois theory of iterated binomials. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/16688

Chicago Manual of Style (16^{th} Edition):

Danielson, Lynda Major. “The galois theory of iterated binomials.” 1995. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/16688.

MLA Handbook (7^{th} Edition):

Danielson, Lynda Major. “The galois theory of iterated binomials.” 1995. Web. 29 Nov 2020.

Vancouver:

Danielson LM. The galois theory of iterated binomials. [Internet] [Doctoral dissertation]. Oregon State University; 1995. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/16688.

Council of Science Editors:

Danielson LM. The galois theory of iterated binomials. [Doctoral Dissertation]. Oregon State University; 1995. Available from: http://hdl.handle.net/1957/16688

3.
McBride, Anna Christine.
Some new aspects of the *Galois* * theory*.

Degree: 1913, University of Missouri

URL: http://hdl.handle.net/10355/16155

► Realizing that the *Galois* *theory* of algebraic equations as commonly presented seems artificial, abstract, and intricate, we have been led in the following paper to…
(more)

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McBride, A. C. (1913). Some new aspects of the Galois theory. (Thesis). University of Missouri. Retrieved from http://hdl.handle.net/10355/16155

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

McBride, Anna Christine. “Some new aspects of the Galois theory.” 1913. Thesis, University of Missouri. Accessed November 29, 2020. http://hdl.handle.net/10355/16155.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

McBride, Anna Christine. “Some new aspects of the Galois theory.” 1913. Web. 29 Nov 2020.

Vancouver:

McBride AC. Some new aspects of the Galois theory. [Internet] [Thesis]. University of Missouri; 1913. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10355/16155.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McBride AC. Some new aspects of the Galois theory. [Thesis]. University of Missouri; 1913. Available from: http://hdl.handle.net/10355/16155

Not specified: Masters Thesis or Doctoral Dissertation

Louisiana State University

4. Chapman, David H. On Greenberg's question: an algebraic and computational approach.

Degree: PhD, Applied Mathematics, 2011, Louisiana State University

URL: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

Greenberg asked whether arithmetically equivalent number fields share the same Iwasawa invariants. In this dissertation it is shown that the problem naturally breaks up into four cases, depending on properties of Galois groups. This analysis is then used to give a positive answer to Greenberg’s question in some nontrivial examples.

Subjects/Keywords: number theory; Galois theory; Iwasawa theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chapman, D. H. (2011). On Greenberg's question: an algebraic and computational approach. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

Chicago Manual of Style (16^{th} Edition):

Chapman, David H. “On Greenberg's question: an algebraic and computational approach.” 2011. Doctoral Dissertation, Louisiana State University. Accessed November 29, 2020. etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462.

MLA Handbook (7^{th} Edition):

Chapman, David H. “On Greenberg's question: an algebraic and computational approach.” 2011. Web. 29 Nov 2020.

Vancouver:

Chapman DH. On Greenberg's question: an algebraic and computational approach. [Internet] [Doctoral dissertation]. Louisiana State University; 2011. [cited 2020 Nov 29]. Available from: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462.

Council of Science Editors:

Chapman DH. On Greenberg's question: an algebraic and computational approach. [Doctoral Dissertation]. Louisiana State University; 2011. Available from: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

5.
Lima, Marcos Goulart.
Teoria algébrica de números e o grupo de * Galois*.

Degree: Mestrado, Matemática, 2009, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

►

Nessa dissertação provamos que se n é um inteiro par ou primo, então o Grupo de *Galois* de \'x POT.n ́- \'x POT.n - 1\"...-…
(more)

Subjects/Keywords: Algebraic theory of numbers; Galois; Galois; Teoria algébrica de números

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lima, M. G. (2009). Teoria algébrica de números e o grupo de Galois. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

Chicago Manual of Style (16^{th} Edition):

Lima, Marcos Goulart. “Teoria algébrica de números e o grupo de Galois.” 2009. Masters Thesis, University of São Paulo. Accessed November 29, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;.

MLA Handbook (7^{th} Edition):

Lima, Marcos Goulart. “Teoria algébrica de números e o grupo de Galois.” 2009. Web. 29 Nov 2020.

Vancouver:

Lima MG. Teoria algébrica de números e o grupo de Galois. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2020 Nov 29]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;.

Council of Science Editors:

Lima MG. Teoria algébrica de números e o grupo de Galois. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

Universidade Estadual de Campinas

6. Carvalho, Kiscinger Muniz de, 1978-. A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility.

Degree: 2015, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306427

► Abstract: The Methods for obtaining roots of polynomial equations is a content that deserves more attention in school basic and higher levels. The manipulative mechanism,…
(more)

Subjects/Keywords: Polinômios; Galois, Teoria de; Equações algébricas; Polynomials; Algebraic equations; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carvalho, Kiscinger Muniz de, 1. (2015). A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306427

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Carvalho, Kiscinger Muniz de, 1978-. “A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility.” 2015. Thesis, Universidade Estadual de Campinas. Accessed November 29, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306427.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Carvalho, Kiscinger Muniz de, 1978-. “A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility.” 2015. Web. 29 Nov 2020.

Vancouver:

Carvalho, Kiscinger Muniz de 1. A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility. [Internet] [Thesis]. Universidade Estadual de Campinas; 2015. [cited 2020 Nov 29]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306427.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Carvalho, Kiscinger Muniz de 1. A álgebra das equações polinomiais e sua solubilidade: The algebra of polynomials equations and their solubility. [Thesis]. Universidade Estadual de Campinas; 2015. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306427

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

7.
Ataei Jaliseh, Masoud.
* Galois* 2-Extensions.

Degree: 2015, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3381

► The inverse *Galois* problem is a major question in mathematics. For a given base field and a given finite group G, one would like to…
(more)

Subjects/Keywords: Galois Theory; Class Field Theory; Massey Products; Galois Extensions of Local Fields.; Algebra; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ataei Jaliseh, M. (2015). Galois 2-Extensions. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Thesis, University of Western Ontario. Accessed November 29, 2020. https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Web. 29 Nov 2020.

Vancouver:

Ataei Jaliseh M. Galois 2-Extensions. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Nov 29]. Available from: https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ataei Jaliseh M. Galois 2-Extensions. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

UCLA

8. Ventullo, Kevin Patrick. On the Gross-Stark and Iwasawa Main Conjectures.

Degree: Mathematics, 2014, UCLA

URL: http://www.escholarship.org/uc/item/3xs1w5vb

► Let F be a totally real number field, p a rational prime, and χ a finite order totally odd abelian character of Gal(F̅/F) such that…
(more)

Subjects/Keywords: Mathematics; Galois Representations; L-functions; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ventullo, K. P. (2014). On the Gross-Stark and Iwasawa Main Conjectures. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3xs1w5vb

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Thesis, UCLA. Accessed November 29, 2020. http://www.escholarship.org/uc/item/3xs1w5vb.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Web. 29 Nov 2020.

Vancouver:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Nov 29]. Available from: http://www.escholarship.org/uc/item/3xs1w5vb.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3xs1w5vb

Not specified: Masters Thesis or Doctoral Dissertation

UCLA

9.
Lang, Jaclyn Ann.
Images of *Galois* representations associated to p-adic families of modular forms.

Degree: Mathematics, 2016, UCLA

URL: http://www.escholarship.org/uc/item/4nj4h2bt

Ribet and Momose described the effect of extra twists on the image of Galois representations associated to classical modular forms in the 1980s. We prove analogous results for the Galois representations associated to Hida families of modular forms.

Subjects/Keywords: Mathematics; deformation theory; Galois representation; Hida family

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lang, J. A. (2016). Images of Galois representations associated to p-adic families of modular forms. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/4nj4h2bt

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lang, Jaclyn Ann. “Images of Galois representations associated to p-adic families of modular forms.” 2016. Thesis, UCLA. Accessed November 29, 2020. http://www.escholarship.org/uc/item/4nj4h2bt.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lang, Jaclyn Ann. “Images of Galois representations associated to p-adic families of modular forms.” 2016. Web. 29 Nov 2020.

Vancouver:

Lang JA. Images of Galois representations associated to p-adic families of modular forms. [Internet] [Thesis]. UCLA; 2016. [cited 2020 Nov 29]. Available from: http://www.escholarship.org/uc/item/4nj4h2bt.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lang JA. Images of Galois representations associated to p-adic families of modular forms. [Thesis]. UCLA; 2016. Available from: http://www.escholarship.org/uc/item/4nj4h2bt

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

10.
Yelton, Jeffrey Samuel.
Hyperelliptic Jacobians and their associated $\ell$-adic *Galois* representations.

Degree: 2015, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/25868

► Let k be a field of characteristic different from 2, and let K be the extension of k obtained by adjoining the symmetric functions of…
(more)

Subjects/Keywords: abelian variety; elliptic curve; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yelton, J. S. (2015). Hyperelliptic Jacobians and their associated $\ell$-adic Galois representations. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/25868

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yelton, Jeffrey Samuel. “Hyperelliptic Jacobians and their associated $\ell$-adic Galois representations.” 2015. Thesis, Penn State University. Accessed November 29, 2020. https://submit-etda.libraries.psu.edu/catalog/25868.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yelton, Jeffrey Samuel. “Hyperelliptic Jacobians and their associated $\ell$-adic Galois representations.” 2015. Web. 29 Nov 2020.

Vancouver:

Yelton JS. Hyperelliptic Jacobians and their associated $\ell$-adic Galois representations. [Internet] [Thesis]. Penn State University; 2015. [cited 2020 Nov 29]. Available from: https://submit-etda.libraries.psu.edu/catalog/25868.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yelton JS. Hyperelliptic Jacobians and their associated $\ell$-adic Galois representations. [Thesis]. Penn State University; 2015. Available from: https://submit-etda.libraries.psu.edu/catalog/25868

Not specified: Masters Thesis or Doctoral Dissertation

11. Fernando Neres de Oliveira. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

►

O objetivo principal deste trabalho Ã apresentar alguns resultados, relativos ao nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.Para isso, iremos inicialmente… (more)

Subjects/Keywords: TEORIA DOS NUMEROS; ideais; Galois, teoria de; grupos abelianos; ideals; galois theory; abelian groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliveira, F. N. d. (2010). O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

Chicago Manual of Style (16^{th} Edition):

Oliveira, Fernando Neres de. “O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed November 29, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;.

MLA Handbook (7^{th} Edition):

Oliveira, Fernando Neres de. “O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.” 2010. Web. 29 Nov 2020.

Vancouver:

Oliveira FNd. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Nov 29]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;.

Council of Science Editors:

Oliveira FNd. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

Cornell University

12.
Chen, Taoran.
An Inverse *Galois* Deformation Problem.

Degree: PhD, Mathematics, 2018, Cornell University

URL: http://hdl.handle.net/1813/59641

► Suppose ρ̅: \Gal({F̅/F}) → \GL_{2}(\mathbf{k}) is a residual *Galois* representation satisfying several mild conditions, where F is a number field and \mathbf{k} is a finite…
(more)

Subjects/Keywords: Galois representation; number theory; universal deformation ring; Mathematics; deformation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, T. (2018). An Inverse Galois Deformation Problem. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/59641

Chicago Manual of Style (16^{th} Edition):

Chen, Taoran. “An Inverse Galois Deformation Problem.” 2018. Doctoral Dissertation, Cornell University. Accessed November 29, 2020. http://hdl.handle.net/1813/59641.

MLA Handbook (7^{th} Edition):

Chen, Taoran. “An Inverse Galois Deformation Problem.” 2018. Web. 29 Nov 2020.

Vancouver:

Chen T. An Inverse Galois Deformation Problem. [Internet] [Doctoral dissertation]. Cornell University; 2018. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1813/59641.

Council of Science Editors:

Chen T. An Inverse Galois Deformation Problem. [Doctoral Dissertation]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59641

University of Waikato

13.
Qin, Chao.
Iwasawa *theory* over solvable three-dimensional p-adic Lie extensions
.

Degree: 2018, University of Waikato

URL: http://hdl.handle.net/10289/12250

► Iwasawa *theory* is a powerful tool which describes the mysterious relationship between arithmetic objects (motives) and the special values of L-functions. A precise form of…
(more)

Subjects/Keywords: Iwasawa theory; K-theory; p-adic L-functions; Galois representations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Qin, C. (2018). Iwasawa theory over solvable three-dimensional p-adic Lie extensions . (Doctoral Dissertation). University of Waikato. Retrieved from http://hdl.handle.net/10289/12250

Chicago Manual of Style (16^{th} Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Doctoral Dissertation, University of Waikato. Accessed November 29, 2020. http://hdl.handle.net/10289/12250.

MLA Handbook (7^{th} Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Web. 29 Nov 2020.

Vancouver:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Internet] [Doctoral dissertation]. University of Waikato; 2018. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10289/12250.

Council of Science Editors:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Doctoral Dissertation]. University of Waikato; 2018. Available from: http://hdl.handle.net/10289/12250

University of Washington

14. Palvannan, Bharathwaj. On Selmer groups and factoring p-adic L-functions.

Degree: PhD, 2016, University of Washington

URL: http://hdl.handle.net/1773/36751

► Samit Dasgupta has proved a formula factoring a certain restriction of a 3-variable Rankin-Selberg p-adic L-function as a product of a 2-variable p-adic L-function related…
(more)

Subjects/Keywords: Galois cohomology; Hida Theory; Iwasawa theory; Selmer groups; Mathematics; mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Palvannan, B. (2016). On Selmer groups and factoring p-adic L-functions. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/36751

Chicago Manual of Style (16^{th} Edition):

Palvannan, Bharathwaj. “On Selmer groups and factoring p-adic L-functions.” 2016. Doctoral Dissertation, University of Washington. Accessed November 29, 2020. http://hdl.handle.net/1773/36751.

MLA Handbook (7^{th} Edition):

Palvannan, Bharathwaj. “On Selmer groups and factoring p-adic L-functions.” 2016. Web. 29 Nov 2020.

Vancouver:

Palvannan B. On Selmer groups and factoring p-adic L-functions. [Internet] [Doctoral dissertation]. University of Washington; 2016. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1773/36751.

Council of Science Editors:

Palvannan B. On Selmer groups and factoring p-adic L-functions. [Doctoral Dissertation]. University of Washington; 2016. Available from: http://hdl.handle.net/1773/36751

University of Kansas

15. Lohoefener, Jennifer Lee. A Methodology for Automated Verification of Rosetta Specification Transformations.

Degree: PhD, Electrical Engineering & Computer Science, 2011, University of Kansas

URL: http://hdl.handle.net/1808/7660

► The Rosetta system-level design language is a specification language created to support design and analysis of heterogeneous models at varying levels of abstraction. These abstraction…
(more)

Subjects/Keywords: Computer science; Abstract interpretation; Category theory; Galois connection; Lattice theory; Rosetta

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lohoefener, J. L. (2011). A Methodology for Automated Verification of Rosetta Specification Transformations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/7660

Chicago Manual of Style (16^{th} Edition):

Lohoefener, Jennifer Lee. “A Methodology for Automated Verification of Rosetta Specification Transformations.” 2011. Doctoral Dissertation, University of Kansas. Accessed November 29, 2020. http://hdl.handle.net/1808/7660.

MLA Handbook (7^{th} Edition):

Lohoefener, Jennifer Lee. “A Methodology for Automated Verification of Rosetta Specification Transformations.” 2011. Web. 29 Nov 2020.

Vancouver:

Lohoefener JL. A Methodology for Automated Verification of Rosetta Specification Transformations. [Internet] [Doctoral dissertation]. University of Kansas; 2011. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1808/7660.

Council of Science Editors:

Lohoefener JL. A Methodology for Automated Verification of Rosetta Specification Transformations. [Doctoral Dissertation]. University of Kansas; 2011. Available from: http://hdl.handle.net/1808/7660

University of Pennsylvania

16.
Topaz, Adam.
Commuting-Liftable Subgroups of *Galois* Groups.

Degree: 2013, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/708

► Let n denote either a positive integer or ∞, let ell be a fixed prime and let K be a field of characteristic different from…
(more)

Subjects/Keywords: abelian-by-central; local theory; pro-ell Galois theory; valuations; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Topaz, A. (2013). Commuting-Liftable Subgroups of Galois Groups. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/708

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Topaz, Adam. “Commuting-Liftable Subgroups of Galois Groups.” 2013. Thesis, University of Pennsylvania. Accessed November 29, 2020. https://repository.upenn.edu/edissertations/708.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Topaz, Adam. “Commuting-Liftable Subgroups of Galois Groups.” 2013. Web. 29 Nov 2020.

Vancouver:

Topaz A. Commuting-Liftable Subgroups of Galois Groups. [Internet] [Thesis]. University of Pennsylvania; 2013. [cited 2020 Nov 29]. Available from: https://repository.upenn.edu/edissertations/708.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Topaz A. Commuting-Liftable Subgroups of Galois Groups. [Thesis]. University of Pennsylvania; 2013. Available from: https://repository.upenn.edu/edissertations/708

Not specified: Masters Thesis or Doctoral Dissertation

17.
Bay-Rousson, Hugo.
Isomonodromie en théorie de *Galois* différentielle : Isomonodromic deformation in differential *Galois* * theory*.

Degree: Docteur es, Mathématiques, 2019, Sorbonne université

URL: http://www.theses.fr/2019SORUS044

►

La première partie de cette thèse concerne la généralisation d'une caractérisation, d'un point de vu Tannakien, des suites exactes de schémas en groupoïdes affines, qui… (more)

Subjects/Keywords: Théorie Tannakienne; Représentations des schémas en groupoïdes; Théorie de Galois différentielle; Tannakian theory; Representations of groupoid schemes; Differential Galois theory; 516.35

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bay-Rousson, H. (2019). Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2019SORUS044

Chicago Manual of Style (16^{th} Edition):

Bay-Rousson, Hugo. “Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory.” 2019. Doctoral Dissertation, Sorbonne université. Accessed November 29, 2020. http://www.theses.fr/2019SORUS044.

MLA Handbook (7^{th} Edition):

Bay-Rousson, Hugo. “Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory.” 2019. Web. 29 Nov 2020.

Vancouver:

Bay-Rousson H. Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. [Internet] [Doctoral dissertation]. Sorbonne université; 2019. [cited 2020 Nov 29]. Available from: http://www.theses.fr/2019SORUS044.

Council of Science Editors:

Bay-Rousson H. Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. [Doctoral Dissertation]. Sorbonne université; 2019. Available from: http://www.theses.fr/2019SORUS044

Harvard University

18.
Wang Erickson, Carl William.
Moduli of *Galois* Representations.

Degree: PhD, Mathematics, 2013, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

►

The theme of this thesis is the study of moduli stacks of representations of an associative algebra, with an eye toward continuous representations of profinite… (more)

Subjects/Keywords: Mathematics; Galois representation; moduli; p-adic Hodge theory; pseudorepresentation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang Erickson, C. W. (2013). Moduli of Galois Representations. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

Chicago Manual of Style (16^{th} Edition):

Wang Erickson, Carl William. “Moduli of Galois Representations.” 2013. Doctoral Dissertation, Harvard University. Accessed November 29, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709.

MLA Handbook (7^{th} Edition):

Wang Erickson, Carl William. “Moduli of Galois Representations.” 2013. Web. 29 Nov 2020.

Vancouver:

Wang Erickson CW. Moduli of Galois Representations. [Internet] [Doctoral dissertation]. Harvard University; 2013. [cited 2020 Nov 29]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709.

Council of Science Editors:

Wang Erickson CW. Moduli of Galois Representations. [Doctoral Dissertation]. Harvard University; 2013. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

Florida State University

19.
Replogle, James.
Aspects of *Galois* *Theory* with an application to the general quintic.

Degree: 1952, Florida State University

URL: http://purl.flvc.org/fsu/fd/FSU_historic_AKP5011 ;

►

"In 1824, the Norwegian mathematician N. H. Abel (1802-1829) proved that the general polynomial equation of degree greater than four with real numbers as coefficients… (more)

Subjects/Keywords: Galois theory; Quintic equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Replogle, J. (1952). Aspects of Galois Theory with an application to the general quintic. (Masters Thesis). Florida State University. Retrieved from http://purl.flvc.org/fsu/fd/FSU_historic_AKP5011 ;

Chicago Manual of Style (16^{th} Edition):

Replogle, James. “Aspects of Galois Theory with an application to the general quintic.” 1952. Masters Thesis, Florida State University. Accessed November 29, 2020. http://purl.flvc.org/fsu/fd/FSU_historic_AKP5011 ;.

MLA Handbook (7^{th} Edition):

Replogle, James. “Aspects of Galois Theory with an application to the general quintic.” 1952. Web. 29 Nov 2020.

Vancouver:

Replogle J. Aspects of Galois Theory with an application to the general quintic. [Internet] [Masters thesis]. Florida State University; 1952. [cited 2020 Nov 29]. Available from: http://purl.flvc.org/fsu/fd/FSU_historic_AKP5011 ;.

Council of Science Editors:

Replogle J. Aspects of Galois Theory with an application to the general quintic. [Masters Thesis]. Florida State University; 1952. Available from: http://purl.flvc.org/fsu/fd/FSU_historic_AKP5011 ;

Harvard University

20. Lovering, Thomas. Integral canonical models for G-bundles on Shimura varieties of abelian type.

Degree: PhD, 2017, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142070

►

This thesis builds on Kisin's theories of S-modules and integral models for Shimura varieties of abelian type to further our understanding of the arithmetic of… (more)

Subjects/Keywords: Shimura varieties; galois representation; number theory; arithmetic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lovering, T. (2017). Integral canonical models for G-bundles on Shimura varieties of abelian type. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142070

Chicago Manual of Style (16^{th} Edition):

Lovering, Thomas. “Integral canonical models for G-bundles on Shimura varieties of abelian type.” 2017. Doctoral Dissertation, Harvard University. Accessed November 29, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142070.

MLA Handbook (7^{th} Edition):

Lovering, Thomas. “Integral canonical models for G-bundles on Shimura varieties of abelian type.” 2017. Web. 29 Nov 2020.

Vancouver:

Lovering T. Integral canonical models for G-bundles on Shimura varieties of abelian type. [Internet] [Doctoral dissertation]. Harvard University; 2017. [cited 2020 Nov 29]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142070.

Council of Science Editors:

Lovering T. Integral canonical models for G-bundles on Shimura varieties of abelian type. [Doctoral Dissertation]. Harvard University; 2017. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142070

Brigham Young University

21. Blackhurst, Jonathan H. Proven Cases of a Generalization of Serre's Conjecture.

Degree: MS, 2006, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd

In the 1970's Serre conjectured a correspondence between modular forms and two-dimensional Galois representations. Ash, Doud, and Pollack have extended this conjecture to a correspondence between Hecke eigenclasses in arithmetic cohomology and n-dimensional Galois representations. We present some of the first examples of proven cases of this generalized conjecture.

Subjects/Keywords: Galois representations; number theory; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Blackhurst, J. H. (2006). Proven Cases of a Generalization of Serre's Conjecture. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd

Chicago Manual of Style (16^{th} Edition):

Blackhurst, Jonathan H. “Proven Cases of a Generalization of Serre's Conjecture.” 2006. Masters Thesis, Brigham Young University. Accessed November 29, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd.

MLA Handbook (7^{th} Edition):

Blackhurst, Jonathan H. “Proven Cases of a Generalization of Serre's Conjecture.” 2006. Web. 29 Nov 2020.

Vancouver:

Blackhurst JH. Proven Cases of a Generalization of Serre's Conjecture. [Internet] [Masters thesis]. Brigham Young University; 2006. [cited 2020 Nov 29]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd.

Council of Science Editors:

Blackhurst JH. Proven Cases of a Generalization of Serre's Conjecture. [Masters Thesis]. Brigham Young University; 2006. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd

University of Cambridge

22. Anastassiades, Christos. Level raising for automorphic representations of GL(2n).

Degree: PhD, 2019, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/292530

► To each regular algebraic, conjugate self-dual, cuspidal automorphic representation Π of {GL}(N) over a CM number field E (or, more generally, to a regular algebraic…
(more)

Subjects/Keywords: Number Theory; Automorphic Representations; Galois Representations; Level Raising

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Anastassiades, C. (2019). Level raising for automorphic representations of GL(2n). (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/292530

Chicago Manual of Style (16^{th} Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Doctoral Dissertation, University of Cambridge. Accessed November 29, 2020. https://www.repository.cam.ac.uk/handle/1810/292530.

MLA Handbook (7^{th} Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Web. 29 Nov 2020.

Vancouver:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2020 Nov 29]. Available from: https://www.repository.cam.ac.uk/handle/1810/292530.

Council of Science Editors:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/292530

University of Illinois – Chicago

23. Wechter, Matthew A. Differential Operators on Finite Purely Inseparable Extensions.

Degree: 2013, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/10166

► We study the the differential operators of a finite modular field extension. Using the Jacobson-Bourbaki Theorem, we establish criteria for when a subalgebra of the…
(more)

Subjects/Keywords: Galois theory; purely inseparable extension; higher derivation; modular extension

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wechter, M. A. (2013). Differential Operators on Finite Purely Inseparable Extensions. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10166

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Thesis, University of Illinois – Chicago. Accessed November 29, 2020. http://hdl.handle.net/10027/10166.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wechter, Matthew A. “Differential Operators on Finite Purely Inseparable Extensions.” 2013. Web. 29 Nov 2020.

Vancouver:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10027/10166.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wechter MA. Differential Operators on Finite Purely Inseparable Extensions. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10166

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

24.
Green, Benjamin.
* Galois* representations attached to algebraic automorphic representations.

Degree: PhD, 2016, University of Oxford

URL: https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056

► This thesis is concerned with the Langlands program; namely the global Langlands correspondence, Langlands functoriality, and a conjecture of Gross. In chapter 1, we cover…
(more)

Subjects/Keywords: 512; Number theory; Mathematics; Langlands Program; Automorphic Representations; Galois Representations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Green, B. (2016). Galois representations attached to algebraic automorphic representations. (Doctoral Dissertation). University of Oxford. Retrieved from https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056

Chicago Manual of Style (16^{th} Edition):

Green, Benjamin. “Galois representations attached to algebraic automorphic representations.” 2016. Doctoral Dissertation, University of Oxford. Accessed November 29, 2020. https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056.

MLA Handbook (7^{th} Edition):

Green, Benjamin. “Galois representations attached to algebraic automorphic representations.” 2016. Web. 29 Nov 2020.

Vancouver:

Green B. Galois representations attached to algebraic automorphic representations. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2020 Nov 29]. Available from: https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056.

Council of Science Editors:

Green B. Galois representations attached to algebraic automorphic representations. [Doctoral Dissertation]. University of Oxford; 2016. Available from: https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056

Florida Atlantic University

25. Harmon, Drake. A class of rational surfaces with a non-rational singularity explicitly given by a single equation.

Degree: PhD, 2013, Florida Atlantic University

URL: http://purl.flvc.org/fcla/dt/3360782

►

Summary: The family of algebraic surfaces X dened by the single equation zn = (y a1x) (y anx)(x 1) over an algebraically closed eld k… (more)

Subjects/Keywords: Mathematics; Galois modules (Algebra); Class field theory; Algebraic varieties; Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Harmon, D. (2013). A class of rational surfaces with a non-rational singularity explicitly given by a single equation. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/fcla/dt/3360782

Chicago Manual of Style (16^{th} Edition):

Harmon, Drake. “A class of rational surfaces with a non-rational singularity explicitly given by a single equation.” 2013. Doctoral Dissertation, Florida Atlantic University. Accessed November 29, 2020. http://purl.flvc.org/fcla/dt/3360782.

MLA Handbook (7^{th} Edition):

Harmon, Drake. “A class of rational surfaces with a non-rational singularity explicitly given by a single equation.” 2013. Web. 29 Nov 2020.

Vancouver:

Harmon D. A class of rational surfaces with a non-rational singularity explicitly given by a single equation. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2013. [cited 2020 Nov 29]. Available from: http://purl.flvc.org/fcla/dt/3360782.

Council of Science Editors:

Harmon D. A class of rational surfaces with a non-rational singularity explicitly given by a single equation. [Doctoral Dissertation]. Florida Atlantic University; 2013. Available from: http://purl.flvc.org/fcla/dt/3360782

East Carolina University

26.
Kennedy, Kendra.
Diophantine Generation, *Galois* *Theory*, and Hilbert's Tenth Problem.

Degree: MA, Mathematics, 2012, East Carolina University

URL: http://hdl.handle.net/10342/3847

► Hilbert's Tenth Problem was a question concerning existence of an algorithm to determine if there were integer solutions to arbitrary polynomial equations over the integers.…
(more)

Subjects/Keywords: Mathematics; Diophantine undecidability; Diophantine equations; Hilbert's tenth problem; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, K. (2012). Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. (Masters Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3847

Chicago Manual of Style (16^{th} Edition):

Kennedy, Kendra. “Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem.” 2012. Masters Thesis, East Carolina University. Accessed November 29, 2020. http://hdl.handle.net/10342/3847.

MLA Handbook (7^{th} Edition):

Kennedy, Kendra. “Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem.” 2012. Web. 29 Nov 2020.

Vancouver:

Kennedy K. Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. [Internet] [Masters thesis]. East Carolina University; 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10342/3847.

Council of Science Editors:

Kennedy K. Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. [Masters Thesis]. East Carolina University; 2012. Available from: http://hdl.handle.net/10342/3847

27.
Burda, Yuri.
Topological Methods in *Galois* * Theory*.

Degree: 2012, University of Toronto

URL: http://hdl.handle.net/1807/33941

►

This thesis is devoted to application of topological ideas to *Galois* *theory*. In the fi rst part we obtain a characterization of branching data that…
(more)

Subjects/Keywords: Topological Galois Theory; 0405

…Chapter 1. Introduction
2
One proves in *Galois* *theory* that the *Galois* group of any… …theorem 1 from a course of A. G. Khovanskii called “*Galois* *theory* and Riemann surfaces”. Another… …Simplification of the quintic
*Galois* *theory* can be used to show that generic algebraic equation of… …field K with non-solvable
*Galois* group over K (i.e. the *Galois* group of the extension K… …group of an algebraic function is isomorphic to the *Galois* group of the equation that
defines…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Burda, Y. (2012). Topological Methods in Galois Theory. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/33941

Chicago Manual of Style (16^{th} Edition):

Burda, Yuri. “Topological Methods in Galois Theory.” 2012. Doctoral Dissertation, University of Toronto. Accessed November 29, 2020. http://hdl.handle.net/1807/33941.

MLA Handbook (7^{th} Edition):

Burda, Yuri. “Topological Methods in Galois Theory.” 2012. Web. 29 Nov 2020.

Vancouver:

Burda Y. Topological Methods in Galois Theory. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1807/33941.

Council of Science Editors:

Burda Y. Topological Methods in Galois Theory. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/33941

Texas Tech University

28.
Barnes, Marla Christine.
On *Galois* *theory* and the insolvability of the Quintic.

Degree: Mathematics, 1998, Texas Tech University

URL: http://hdl.handle.net/2346/14279

Subjects/Keywords: Quintic equations; Galois theory; Polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Barnes, M. C. (1998). On Galois theory and the insolvability of the Quintic. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/14279

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Barnes, Marla Christine. “On Galois theory and the insolvability of the Quintic.” 1998. Thesis, Texas Tech University. Accessed November 29, 2020. http://hdl.handle.net/2346/14279.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Barnes, Marla Christine. “On Galois theory and the insolvability of the Quintic.” 1998. Web. 29 Nov 2020.

Vancouver:

Barnes MC. On Galois theory and the insolvability of the Quintic. [Internet] [Thesis]. Texas Tech University; 1998. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2346/14279.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barnes MC. On Galois theory and the insolvability of the Quintic. [Thesis]. Texas Tech University; 1998. Available from: http://hdl.handle.net/2346/14279

Not specified: Masters Thesis or Doctoral Dissertation

University of Southampton

29. Syddall, Robert Ian. Uniform dessins of low genus.

Degree: PhD, 1997, University of Southampton

URL: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Subjects/Keywords: 510; Maps; Hypermaps; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Syddall, R. I. (1997). Uniform dessins of low genus. (Doctoral Dissertation). University of Southampton. Retrieved from https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Chicago Manual of Style (16^{th} Edition):

Syddall, Robert Ian. “Uniform dessins of low genus.” 1997. Doctoral Dissertation, University of Southampton. Accessed November 29, 2020. https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656.

MLA Handbook (7^{th} Edition):

Syddall, Robert Ian. “Uniform dessins of low genus.” 1997. Web. 29 Nov 2020.

Vancouver:

Syddall RI. Uniform dessins of low genus. [Internet] [Doctoral dissertation]. University of Southampton; 1997. [cited 2020 Nov 29]. Available from: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656.

Council of Science Editors:

Syddall RI. Uniform dessins of low genus. [Doctoral Dissertation]. University of Southampton; 1997. Available from: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Virginia Tech

30.
Wills, Andrew Johan.
Topics in Inverse *Galois* * Theory*.

Degree: MS, Mathematics, 2011, Virginia Tech

URL: http://hdl.handle.net/10919/32160

► *Galois* *theory*, the study of the structure and symmetry of a polynomial or associated field extension, is a standard tool for showing the insolvability of…
(more)

Subjects/Keywords: Kronecker-Weber Theorem; Rigid Groups; Inverse Galois Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wills, A. J. (2011). Topics in Inverse Galois Theory. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32160

Chicago Manual of Style (16^{th} Edition):

Wills, Andrew Johan. “Topics in Inverse Galois Theory.” 2011. Masters Thesis, Virginia Tech. Accessed November 29, 2020. http://hdl.handle.net/10919/32160.

MLA Handbook (7^{th} Edition):

Wills, Andrew Johan. “Topics in Inverse Galois Theory.” 2011. Web. 29 Nov 2020.

Vancouver:

Wills AJ. Topics in Inverse Galois Theory. [Internet] [Masters thesis]. Virginia Tech; 2011. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10919/32160.

Council of Science Editors:

Wills AJ. Topics in Inverse Galois Theory. [Masters Thesis]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/32160