Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(functional generative design). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of South Carolina

1. Bahamonde Jácome, Luis G. 3D Topology Optimization of Spatially Reinforced Composites.

Degree: PhD, Mechanical Engineering, 2019, University of South Carolina

Topology optimization is a numerical design tool used to generate structural concepts that present optimal load paths for a given set of functional requirements. This functional generative design capability has been used to lightweight high performance structures with 1D, 2D and 3D stress states. On the other hand, fiber-reinforced composites are the perfect candidate material to use in high performance structures due to the tailorability of their stiffness and strength properties. Although numerical tools that simultaneously tailor the composite material properties while optimizing the structural topology exist, these tools are inherently limited to 1D and 2D stress states. This work aims to address this limitation by presenting a new topology optimization framework for 3D design of fiber-reinforced composites. Such computational design framework is composed of three key elements: (i) a macromechanical model, called multi-thread theory, that estimates the stiffness properties of 3D fiber reinforced composites; (ii) a stable coupling algorithm between macro-mechanics and structural analysis codes; and (iii) a scalable optimization algorithm. To evaluate the feasibility of this framework, 2D and 3D topology optimization results are presented. The 2D numerical results are used to investigate the benefits of the new continuation scheme formulated within the optimization algorithm. Moreover, by optimizing 3D topologies with geometric conditions such that the stress state is approximately plane stress, the 2D results are used to show consistency between this computational design framework and other 2D approaches based on classical laminate theory. Finally, to demonstrate the capability of this framework a 3D MBB-beam is simultaneously optimized for both topology and fiber reinforcement orientation. This problem optimized 249,452 design variables to yield an optimized MBB 3D-beam that is 75% lighter, yet only 16.5% more flexible. Such step-change improvement in performance was due to the complex geometry of the optimized MBB 3D-beam (and its aligned reinforcement) involving structural elements such as curvilinear arches, variable-thickness sidewalls and uni-axial struts connecting these walls. Advisors/Committee Members: Zafer Gürdal, Ramy Harik.

Subjects/Keywords: Engineering; Mechanical Engineering; 3D topology optimization; spatially reinforced composites; functional generative design; macromechanical model; stable coupling algorithm; scalable optimization algorithm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bahamonde Jácome, L. G. (2019). 3D Topology Optimization of Spatially Reinforced Composites. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/5457

Chicago Manual of Style (16th Edition):

Bahamonde Jácome, Luis G. “3D Topology Optimization of Spatially Reinforced Composites.” 2019. Doctoral Dissertation, University of South Carolina. Accessed April 22, 2021. https://scholarcommons.sc.edu/etd/5457.

MLA Handbook (7th Edition):

Bahamonde Jácome, Luis G. “3D Topology Optimization of Spatially Reinforced Composites.” 2019. Web. 22 Apr 2021.

Vancouver:

Bahamonde Jácome LG. 3D Topology Optimization of Spatially Reinforced Composites. [Internet] [Doctoral dissertation]. University of South Carolina; 2019. [cited 2021 Apr 22]. Available from: https://scholarcommons.sc.edu/etd/5457.

Council of Science Editors:

Bahamonde Jácome LG. 3D Topology Optimization of Spatially Reinforced Composites. [Doctoral Dissertation]. University of South Carolina; 2019. Available from: https://scholarcommons.sc.edu/etd/5457

.