Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(evolution equations)`

.
Showing records 1 – 30 of
80 total matches.

Search Limiters

Dates

- 2015 – 2019 (22)
- 2010 – 2014 (35)
- 2005 – 2009 (17)

▼ Search Limiters

Georgia Tech

1.
Pinto, João Teixeira.
Slow motion manifolds for a class of evolutionary * equations*.

Degree: PhD, Mathematics, 1995, Georgia Tech

URL: http://hdl.handle.net/1853/29342

Subjects/Keywords: Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pinto, J. T. (1995). Slow motion manifolds for a class of evolutionary equations. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/29342

Chicago Manual of Style (16^{th} Edition):

Pinto, João Teixeira. “Slow motion manifolds for a class of evolutionary equations.” 1995. Doctoral Dissertation, Georgia Tech. Accessed June 24, 2019. http://hdl.handle.net/1853/29342.

MLA Handbook (7^{th} Edition):

Pinto, João Teixeira. “Slow motion manifolds for a class of evolutionary equations.” 1995. Web. 24 Jun 2019.

Vancouver:

Pinto JT. Slow motion manifolds for a class of evolutionary equations. [Internet] [Doctoral dissertation]. Georgia Tech; 1995. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1853/29342.

Council of Science Editors:

Pinto JT. Slow motion manifolds for a class of evolutionary equations. [Doctoral Dissertation]. Georgia Tech; 1995. Available from: http://hdl.handle.net/1853/29342

Michigan State University

2.
Zhao, Guangyu.
On a class of nonlocal *evolution* * equations*.

Degree: PhD, Department of Mathematics, 2005, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:33706

Subjects/Keywords: Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhao, G. (2005). On a class of nonlocal evolution equations. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:33706

Chicago Manual of Style (16^{th} Edition):

Zhao, Guangyu. “On a class of nonlocal evolution equations.” 2005. Doctoral Dissertation, Michigan State University. Accessed June 24, 2019. http://etd.lib.msu.edu/islandora/object/etd:33706.

MLA Handbook (7^{th} Edition):

Zhao, Guangyu. “On a class of nonlocal evolution equations.” 2005. Web. 24 Jun 2019.

Vancouver:

Zhao G. On a class of nonlocal evolution equations. [Internet] [Doctoral dissertation]. Michigan State University; 2005. [cited 2019 Jun 24]. Available from: http://etd.lib.msu.edu/islandora/object/etd:33706.

Council of Science Editors:

Zhao G. On a class of nonlocal evolution equations. [Doctoral Dissertation]. Michigan State University; 2005. Available from: http://etd.lib.msu.edu/islandora/object/etd:33706

Columbia University

3. Picard, Sebastien F. The Hull-Strominger system in complex geometry.

Degree: 2018, Columbia University

URL: https://doi.org/10.7916/D8K08MD5

► In this work, we study the Hull-Strominger system. New solutions are found on hyperkahler fibrations over a Riemann surface. This class of solutions is the…
(more)

Subjects/Keywords: Mathematics; Geometry; Topology; Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Picard, S. F. (2018). The Hull-Strominger system in complex geometry. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8K08MD5

Chicago Manual of Style (16^{th} Edition):

Picard, Sebastien F. “The Hull-Strominger system in complex geometry.” 2018. Doctoral Dissertation, Columbia University. Accessed June 24, 2019. https://doi.org/10.7916/D8K08MD5.

MLA Handbook (7^{th} Edition):

Picard, Sebastien F. “The Hull-Strominger system in complex geometry.” 2018. Web. 24 Jun 2019.

Vancouver:

Picard SF. The Hull-Strominger system in complex geometry. [Internet] [Doctoral dissertation]. Columbia University; 2018. [cited 2019 Jun 24]. Available from: https://doi.org/10.7916/D8K08MD5.

Council of Science Editors:

Picard SF. The Hull-Strominger system in complex geometry. [Doctoral Dissertation]. Columbia University; 2018. Available from: https://doi.org/10.7916/D8K08MD5

Penn State University

4.
Berger, Jeffrey J.
small x *evolution* with impact parameter dependence.

Degree: PhD, Physics, 2012, Penn State University

URL: https://etda.libraries.psu.edu/catalog/16025

► The small Bjorken x regime is becoming more accessible with the higher energies of modern (LHC) and potential future (LHeC,EIC) colliders. In this regime the…
(more)

Subjects/Keywords: QCD; small x; impact parameter; BK evolution; BFKL evolution; evolution equations; nonlinear evolution equations; QCD evolution

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Berger, J. J. (2012). small x evolution with impact parameter dependence. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/16025

Chicago Manual of Style (16^{th} Edition):

Berger, Jeffrey J. “small x evolution with impact parameter dependence.” 2012. Doctoral Dissertation, Penn State University. Accessed June 24, 2019. https://etda.libraries.psu.edu/catalog/16025.

MLA Handbook (7^{th} Edition):

Berger, Jeffrey J. “small x evolution with impact parameter dependence.” 2012. Web. 24 Jun 2019.

Vancouver:

Berger JJ. small x evolution with impact parameter dependence. [Internet] [Doctoral dissertation]. Penn State University; 2012. [cited 2019 Jun 24]. Available from: https://etda.libraries.psu.edu/catalog/16025.

Council of Science Editors:

Berger JJ. small x evolution with impact parameter dependence. [Doctoral Dissertation]. Penn State University; 2012. Available from: https://etda.libraries.psu.edu/catalog/16025

University of Edinburgh

5.
Bocharov, Boris.
Stochastic *evolution* inclusions.

Degree: 2010, University of Edinburgh

URL: http://hdl.handle.net/1842/3772

► This work is concerned with an *evolution* inclusion of a form, in a triple of spaces \V -> H -> V*", where U is a…
(more)

Subjects/Keywords: 510; evolution equations; square integrable Lévy martingales.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bocharov, B. (2010). Stochastic evolution inclusions. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/3772

Chicago Manual of Style (16^{th} Edition):

Bocharov, Boris. “Stochastic evolution inclusions.” 2010. Doctoral Dissertation, University of Edinburgh. Accessed June 24, 2019. http://hdl.handle.net/1842/3772.

MLA Handbook (7^{th} Edition):

Bocharov, Boris. “Stochastic evolution inclusions.” 2010. Web. 24 Jun 2019.

Vancouver:

Bocharov B. Stochastic evolution inclusions. [Internet] [Doctoral dissertation]. University of Edinburgh; 2010. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1842/3772.

Council of Science Editors:

Bocharov B. Stochastic evolution inclusions. [Doctoral Dissertation]. University of Edinburgh; 2010. Available from: http://hdl.handle.net/1842/3772

University of Missouri – Columbia

6.
Pogan, Alexandru Alin, 1976-.
Dichotomy theorems for *evolution* * equations*.

Degree: PhD, 2008, University of Missouri – Columbia

URL: https://doi.org/10.32469/10355/6090

► [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] In the first part of this work, under minimal assumptions, we characterize the Fredholm property…
(more)

Subjects/Keywords: Fredholm equations; Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pogan, Alexandru Alin, 1. (2008). Dichotomy theorems for evolution equations. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/6090

Chicago Manual of Style (16^{th} Edition):

Pogan, Alexandru Alin, 1976-. “Dichotomy theorems for evolution equations.” 2008. Doctoral Dissertation, University of Missouri – Columbia. Accessed June 24, 2019. https://doi.org/10.32469/10355/6090.

MLA Handbook (7^{th} Edition):

Pogan, Alexandru Alin, 1976-. “Dichotomy theorems for evolution equations.” 2008. Web. 24 Jun 2019.

Vancouver:

Pogan, Alexandru Alin 1. Dichotomy theorems for evolution equations. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2008. [cited 2019 Jun 24]. Available from: https://doi.org/10.32469/10355/6090.

Council of Science Editors:

Pogan, Alexandru Alin 1. Dichotomy theorems for evolution equations. [Doctoral Dissertation]. University of Missouri – Columbia; 2008. Available from: https://doi.org/10.32469/10355/6090

University of Pretoria

7.
Lee, Wha-Suck.
An algebraic
- analytic framework for the study of intertwined families of
*evolution* operators.

Degree: Mathematics and Applied Mathematics, 2015, University of Pretoria

URL: http://hdl.handle.net/2263/43532

► We introduce a new framework of generalized operators to handle vector valued distributions, intertwined *evolution* operators of B-*evolution* *equations* and Fokker Planck type *evolution* *equations*.…
(more)

Subjects/Keywords: B-evolution Equations; Partial Differential Equations; Linear Ordinary Differential Equations in Banach Spaces; UCTD

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, W. (2015). An algebraic - analytic framework for the study of intertwined families of evolution operators. (Doctoral Dissertation). University of Pretoria. Retrieved from http://hdl.handle.net/2263/43532

Chicago Manual of Style (16^{th} Edition):

Lee, Wha-Suck. “An algebraic - analytic framework for the study of intertwined families of evolution operators.” 2015. Doctoral Dissertation, University of Pretoria. Accessed June 24, 2019. http://hdl.handle.net/2263/43532.

MLA Handbook (7^{th} Edition):

Lee, Wha-Suck. “An algebraic - analytic framework for the study of intertwined families of evolution operators.” 2015. Web. 24 Jun 2019.

Vancouver:

Lee W. An algebraic - analytic framework for the study of intertwined families of evolution operators. [Internet] [Doctoral dissertation]. University of Pretoria; 2015. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/2263/43532.

Council of Science Editors:

Lee W. An algebraic - analytic framework for the study of intertwined families of evolution operators. [Doctoral Dissertation]. University of Pretoria; 2015. Available from: http://hdl.handle.net/2263/43532

University of Johannesburg

8.
Ndzinisa, Dumsani Raymond.
Integration schemes for Einstein * equations*.

Degree: 2013, University of Johannesburg

URL: http://hdl.handle.net/10210/8572

►

M.Sc. (Applied Mathematics)

Explicit schemes for integrating ODEs and time–dependent partial differential *equations* (in the method of lines–MoL–approach) are very well–known to be stable as…
(more)

Subjects/Keywords: Einstein field equations; Differential equations, Partial - Numerical solutions; Schemes (Algebraic geometry); Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ndzinisa, D. R. (2013). Integration schemes for Einstein equations. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/8572

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ndzinisa, Dumsani Raymond. “Integration schemes for Einstein equations.” 2013. Thesis, University of Johannesburg. Accessed June 24, 2019. http://hdl.handle.net/10210/8572.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ndzinisa, Dumsani Raymond. “Integration schemes for Einstein equations.” 2013. Web. 24 Jun 2019.

Vancouver:

Ndzinisa DR. Integration schemes for Einstein equations. [Internet] [Thesis]. University of Johannesburg; 2013. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/10210/8572.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ndzinisa DR. Integration schemes for Einstein equations. [Thesis]. University of Johannesburg; 2013. Available from: http://hdl.handle.net/10210/8572

Not specified: Masters Thesis or Doctoral Dissertation

University of Hong Kong

9. Lam, Chun-kit. The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model.

Degree: M. Phil., 2008, University of Hong Kong

URL: Lam, C. [林晉傑]. (2008). The dynamics of wave propagation in an inhomogeneous medium : the complex Ginzburg-Landau model. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4088788 ; http://dx.doi.org/10.5353/th_b4088788 ; http://hdl.handle.net/10722/51899

published_or_final_version

Mechanical Engineering

Master

Master of Philosophy

Subjects/Keywords: Differential equations.; Evolution equations, Nonlinear.; Solitons.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lam, C. (2008). The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model. (Masters Thesis). University of Hong Kong. Retrieved from Lam, C. [林晉傑]. (2008). The dynamics of wave propagation in an inhomogeneous medium : the complex Ginzburg-Landau model. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4088788 ; http://dx.doi.org/10.5353/th_b4088788 ; http://hdl.handle.net/10722/51899

Chicago Manual of Style (16^{th} Edition):

Lam, Chun-kit. “The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model.” 2008. Masters Thesis, University of Hong Kong. Accessed June 24, 2019. Lam, C. [林晉傑]. (2008). The dynamics of wave propagation in an inhomogeneous medium : the complex Ginzburg-Landau model. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4088788 ; http://dx.doi.org/10.5353/th_b4088788 ; http://hdl.handle.net/10722/51899.

MLA Handbook (7^{th} Edition):

Lam, Chun-kit. “The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model.” 2008. Web. 24 Jun 2019.

Vancouver:

Lam C. The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model. [Internet] [Masters thesis]. University of Hong Kong; 2008. [cited 2019 Jun 24]. Available from: Lam, C. [林晉傑]. (2008). The dynamics of wave propagation in an inhomogeneous medium : the complex Ginzburg-Landau model. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4088788 ; http://dx.doi.org/10.5353/th_b4088788 ; http://hdl.handle.net/10722/51899.

Council of Science Editors:

Lam C. The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau model. [Masters Thesis]. University of Hong Kong; 2008. Available from: Lam, C. [林晉傑]. (2008). The dynamics of wave propagation in an inhomogeneous medium : the complex Ginzburg-Landau model. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4088788 ; http://dx.doi.org/10.5353/th_b4088788 ; http://hdl.handle.net/10722/51899

Louisiana State University

10.
Grey, Jacob.
Analysis of Nonlinear Dispersive Model * Equations*.

Degree: PhD, Applied Mathematics, 2015, Louisiana State University

URL: etd-07132015-161603 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1587

► In this work we begin with a brief survey of the classical fluid dynamics problem of water waves, and then proceed to derive well known…
(more)

Subjects/Keywords: nonlinear dispersive; PDE; nonlinear partial differential equations; evolution equations; BBM; BBM-KP; KdV; water wave

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Grey, J. (2015). Analysis of Nonlinear Dispersive Model Equations. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07132015-161603 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1587

Chicago Manual of Style (16^{th} Edition):

Grey, Jacob. “Analysis of Nonlinear Dispersive Model Equations.” 2015. Doctoral Dissertation, Louisiana State University. Accessed June 24, 2019. etd-07132015-161603 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1587.

MLA Handbook (7^{th} Edition):

Grey, Jacob. “Analysis of Nonlinear Dispersive Model Equations.” 2015. Web. 24 Jun 2019.

Vancouver:

Grey J. Analysis of Nonlinear Dispersive Model Equations. [Internet] [Doctoral dissertation]. Louisiana State University; 2015. [cited 2019 Jun 24]. Available from: etd-07132015-161603 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1587.

Council of Science Editors:

Grey J. Analysis of Nonlinear Dispersive Model Equations. [Doctoral Dissertation]. Louisiana State University; 2015. Available from: etd-07132015-161603 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1587

University of New South Wales

11.
Roberts, Dale.
* Equations* with Boundary Noise.

Degree: Mathematics & Statistics, 2011, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/51637 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10304/SOURCE02?view=true

► In 1993, Da Prato and Zabczyk showed that if one considers the heat equation on the interval (0,1) with white noise Dirichlet boundary conditions then…
(more)

Subjects/Keywords: Weighted spaces; Stochastic partial differential equations; Gaussian random fields; Stochastic evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roberts, D. (2011). Equations with Boundary Noise. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/51637 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10304/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Roberts, Dale. “Equations with Boundary Noise.” 2011. Doctoral Dissertation, University of New South Wales. Accessed June 24, 2019. http://handle.unsw.edu.au/1959.4/51637 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10304/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Roberts, Dale. “Equations with Boundary Noise.” 2011. Web. 24 Jun 2019.

Vancouver:

Roberts D. Equations with Boundary Noise. [Internet] [Doctoral dissertation]. University of New South Wales; 2011. [cited 2019 Jun 24]. Available from: http://handle.unsw.edu.au/1959.4/51637 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10304/SOURCE02?view=true.

Council of Science Editors:

Roberts D. Equations with Boundary Noise. [Doctoral Dissertation]. University of New South Wales; 2011. Available from: http://handle.unsw.edu.au/1959.4/51637 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:10304/SOURCE02?view=true

University of Texas – Austin

12. Thoren, Elizabeth Erin. Linear instability for incompressible inviscid fluid flows : two classes of perturbations.

Degree: Mathematics, 2009, University of Texas – Austin

URL: http://hdl.handle.net/2152/6571

► One approach to examining the stability of a fluid flow is to linearize the *evolution* equation at an equilibrium and determine (if possible) the stability…
(more)

Subjects/Keywords: Fluid flow; Linear evolution equations; Linear evolution operator; Perturbations; Fluid flow stability; Fluid dynamics mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Thoren, E. E. (2009). Linear instability for incompressible inviscid fluid flows : two classes of perturbations. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/6571

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Thoren, Elizabeth Erin. “Linear instability for incompressible inviscid fluid flows : two classes of perturbations.” 2009. Thesis, University of Texas – Austin. Accessed June 24, 2019. http://hdl.handle.net/2152/6571.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Thoren, Elizabeth Erin. “Linear instability for incompressible inviscid fluid flows : two classes of perturbations.” 2009. Web. 24 Jun 2019.

Vancouver:

Thoren EE. Linear instability for incompressible inviscid fluid flows : two classes of perturbations. [Internet] [Thesis]. University of Texas – Austin; 2009. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/2152/6571.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Thoren EE. Linear instability for incompressible inviscid fluid flows : two classes of perturbations. [Thesis]. University of Texas – Austin; 2009. Available from: http://hdl.handle.net/2152/6571

Not specified: Masters Thesis or Doctoral Dissertation

13.
Ilangovane, R.
Nonisospectral Flows of Certain Class of Nonlinear
Dispersionless and Noncommutative *Evolution* *Equations*;.

Degree: 2014, Pondicherry University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/23386

newline

Subjects/Keywords: Non-Commutative Evolution Equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ilangovane, R. (2014). Nonisospectral Flows of Certain Class of Nonlinear Dispersionless and Noncommutative Evolution Equations;. (Thesis). Pondicherry University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/23386

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ilangovane, R. “Nonisospectral Flows of Certain Class of Nonlinear Dispersionless and Noncommutative Evolution Equations;.” 2014. Thesis, Pondicherry University. Accessed June 24, 2019. http://shodhganga.inflibnet.ac.in/handle/10603/23386.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ilangovane, R. “Nonisospectral Flows of Certain Class of Nonlinear Dispersionless and Noncommutative Evolution Equations;.” 2014. Web. 24 Jun 2019.

Vancouver:

Ilangovane R. Nonisospectral Flows of Certain Class of Nonlinear Dispersionless and Noncommutative Evolution Equations;. [Internet] [Thesis]. Pondicherry University; 2014. [cited 2019 Jun 24]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/23386.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ilangovane R. Nonisospectral Flows of Certain Class of Nonlinear Dispersionless and Noncommutative Evolution Equations;. [Thesis]. Pondicherry University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/23386

Not specified: Masters Thesis or Doctoral Dissertation

University of Hong Kong

14.
霍逸遠; Fok, Yat-yuen, Eric.
Soliton solutions of nonisospectral variable-coefficient
*evolution* *equations* via Zakharov-Shabat dressing method.

Degree: M. Phil., 1996, University of Hong Kong

URL: Fok, Y. E. [霍逸遠]. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121307 ; http://dx.doi.org/10.5353/th_b3121307 ; http://hdl.handle.net/10722/32372

published_or_final_version

Mathematics

Master

Master of Philosophy

Subjects/Keywords: Evolution equations, Nonlinear.; Solitons.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

霍逸遠; Fok, Yat-yuen, E. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Masters Thesis). University of Hong Kong. Retrieved from Fok, Y. E. [霍逸遠]. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121307 ; http://dx.doi.org/10.5353/th_b3121307 ; http://hdl.handle.net/10722/32372

Chicago Manual of Style (16^{th} Edition):

霍逸遠; Fok, Yat-yuen, Eric. “Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method.” 1996. Masters Thesis, University of Hong Kong. Accessed June 24, 2019. Fok, Y. E. [霍逸遠]. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121307 ; http://dx.doi.org/10.5353/th_b3121307 ; http://hdl.handle.net/10722/32372.

MLA Handbook (7^{th} Edition):

霍逸遠; Fok, Yat-yuen, Eric. “Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method.” 1996. Web. 24 Jun 2019.

Vancouver:

霍逸遠; Fok, Yat-yuen E. Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. [Internet] [Masters thesis]. University of Hong Kong; 1996. [cited 2019 Jun 24]. Available from: Fok, Y. E. [霍逸遠]. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121307 ; http://dx.doi.org/10.5353/th_b3121307 ; http://hdl.handle.net/10722/32372.

Council of Science Editors:

霍逸遠; Fok, Yat-yuen E. Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. [Masters Thesis]. University of Hong Kong; 1996. Available from: Fok, Y. E. [霍逸遠]. (1996). Soliton solutions of nonisospectral variable-coefficient evolution equations via Zakharov-Shabat dressing method. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3121307 ; http://dx.doi.org/10.5353/th_b3121307 ; http://hdl.handle.net/10722/32372

University of Hong Kong

15.
鄭楚明; Cheng, Cho-ming.
The *evolution* operator in quantum mechanics and its
applications.

Degree: PhD, 1989, University of Hong Kong

URL: Cheng, C. [鄭楚明]. (1989). The evolution operator in quantum mechanics and its applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3123150 ; http://dx.doi.org/10.5353/th_b3123150 ; http://hdl.handle.net/10722/34556

published_or_final_version

Physics

Doctoral

Doctor of Philosophy

Subjects/Keywords: Evolution equations.; Quantum theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

鄭楚明; Cheng, C. (1989). The evolution operator in quantum mechanics and its applications. (Doctoral Dissertation). University of Hong Kong. Retrieved from Cheng, C. [鄭楚明]. (1989). The evolution operator in quantum mechanics and its applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3123150 ; http://dx.doi.org/10.5353/th_b3123150 ; http://hdl.handle.net/10722/34556

Chicago Manual of Style (16^{th} Edition):

鄭楚明; Cheng, Cho-ming. “The evolution operator in quantum mechanics and its applications.” 1989. Doctoral Dissertation, University of Hong Kong. Accessed June 24, 2019. Cheng, C. [鄭楚明]. (1989). The evolution operator in quantum mechanics and its applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3123150 ; http://dx.doi.org/10.5353/th_b3123150 ; http://hdl.handle.net/10722/34556.

MLA Handbook (7^{th} Edition):

鄭楚明; Cheng, Cho-ming. “The evolution operator in quantum mechanics and its applications.” 1989. Web. 24 Jun 2019.

Vancouver:

鄭楚明; Cheng C. The evolution operator in quantum mechanics and its applications. [Internet] [Doctoral dissertation]. University of Hong Kong; 1989. [cited 2019 Jun 24]. Available from: Cheng, C. [鄭楚明]. (1989). The evolution operator in quantum mechanics and its applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3123150 ; http://dx.doi.org/10.5353/th_b3123150 ; http://hdl.handle.net/10722/34556.

Council of Science Editors:

鄭楚明; Cheng C. The evolution operator in quantum mechanics and its applications. [Doctoral Dissertation]. University of Hong Kong; 1989. Available from: Cheng, C. [鄭楚明]. (1989). The evolution operator in quantum mechanics and its applications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b3123150 ; http://dx.doi.org/10.5353/th_b3123150 ; http://hdl.handle.net/10722/34556

Louisiana State University

16.
Zhang, Qian.
Solving *evolution* *equations* for triad interaction of shallow water waves.

Degree: MSES, Engineering Science and Materials, 2011, Louisiana State University

URL: etd-07042011-003953 ; https://digitalcommons.lsu.edu/gradschool_theses/2084

► This study focuses on solving the *evolution* *equations* for triad interaction in shallow water waves. First, the *evolution* *equations* based on Boussinesq-type *equations* with Pad¨¦…
(more)

Subjects/Keywords: shallow water waves; nonlinear triad interaction; evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, Q. (2011). Solving evolution equations for triad interaction of shallow water waves. (Masters Thesis). Louisiana State University. Retrieved from etd-07042011-003953 ; https://digitalcommons.lsu.edu/gradschool_theses/2084

Chicago Manual of Style (16^{th} Edition):

Zhang, Qian. “Solving evolution equations for triad interaction of shallow water waves.” 2011. Masters Thesis, Louisiana State University. Accessed June 24, 2019. etd-07042011-003953 ; https://digitalcommons.lsu.edu/gradschool_theses/2084.

MLA Handbook (7^{th} Edition):

Zhang, Qian. “Solving evolution equations for triad interaction of shallow water waves.” 2011. Web. 24 Jun 2019.

Vancouver:

Zhang Q. Solving evolution equations for triad interaction of shallow water waves. [Internet] [Masters thesis]. Louisiana State University; 2011. [cited 2019 Jun 24]. Available from: etd-07042011-003953 ; https://digitalcommons.lsu.edu/gradschool_theses/2084.

Council of Science Editors:

Zhang Q. Solving evolution equations for triad interaction of shallow water waves. [Masters Thesis]. Louisiana State University; 2011. Available from: etd-07042011-003953 ; https://digitalcommons.lsu.edu/gradschool_theses/2084

Louisiana State University

17.
Windsperger, Lee Gregory.
Operational methods for *evolution* * equations*.

Degree: PhD, Applied Mathematics, 2012, Louisiana State University

URL: etd-07112012-204148 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3560

► This dissertation refines and further develops numerical methods for the inversion of the classical Laplace transform and explores the effectiveness of these methods when…
(more)

Subjects/Keywords: Evolution Equations; Laplace Transform; Rational Approximation of Semigroups; Numerical Approximation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Windsperger, L. G. (2012). Operational methods for evolution equations. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07112012-204148 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3560

Chicago Manual of Style (16^{th} Edition):

Windsperger, Lee Gregory. “Operational methods for evolution equations.” 2012. Doctoral Dissertation, Louisiana State University. Accessed June 24, 2019. etd-07112012-204148 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3560.

MLA Handbook (7^{th} Edition):

Windsperger, Lee Gregory. “Operational methods for evolution equations.” 2012. Web. 24 Jun 2019.

Vancouver:

Windsperger LG. Operational methods for evolution equations. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2019 Jun 24]. Available from: etd-07112012-204148 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3560.

Council of Science Editors:

Windsperger LG. Operational methods for evolution equations. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-07112012-204148 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3560

University of Southern California

18.
Zhong, Jie.
Second order in time stochastic *evolution* *equations* and
Wiener chaos approach.

Degree: PhD, Applied Mathematics, 2013, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/243955/rec/5731

► This thesis aims to study the well-posedness of second order in time stochastic *evolution* *equations*. ❧ Motivated by the well known stochastic parabolicity condition, a…
(more)

Subjects/Keywords: second order in time; stochastic evolution equations; Wiener chaos

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhong, J. (2013). Second order in time stochastic evolution equations and Wiener chaos approach. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/243955/rec/5731

Chicago Manual of Style (16^{th} Edition):

Zhong, Jie. “Second order in time stochastic evolution equations and Wiener chaos approach.” 2013. Doctoral Dissertation, University of Southern California. Accessed June 24, 2019. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/243955/rec/5731.

MLA Handbook (7^{th} Edition):

Zhong, Jie. “Second order in time stochastic evolution equations and Wiener chaos approach.” 2013. Web. 24 Jun 2019.

Vancouver:

Zhong J. Second order in time stochastic evolution equations and Wiener chaos approach. [Internet] [Doctoral dissertation]. University of Southern California; 2013. [cited 2019 Jun 24]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/243955/rec/5731.

Council of Science Editors:

Zhong J. Second order in time stochastic evolution equations and Wiener chaos approach. [Doctoral Dissertation]. University of Southern California; 2013. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/243955/rec/5731

University of Miami

19.
Cardona, Jorge Eduardo.
On Statistical Solutions of *Evolution* * Equations*.

Degree: PhD, Mathematics (Arts and Sciences), 2017, University of Miami

URL: https://scholarlyrepository.miami.edu/oa_dissertations/1917

► I study different types of statistical solutions (Hopf, Foias , Vishik-Fursikov) for nonlinear *evolution* *equations*. As a test equation, I use the nonlinear Schrödinger equation…
(more)

Subjects/Keywords: probability; statistical solutions; evolution equations; measurable semiflow selection

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cardona, J. E. (2017). On Statistical Solutions of Evolution Equations. (Doctoral Dissertation). University of Miami. Retrieved from https://scholarlyrepository.miami.edu/oa_dissertations/1917

Chicago Manual of Style (16^{th} Edition):

Cardona, Jorge Eduardo. “On Statistical Solutions of Evolution Equations.” 2017. Doctoral Dissertation, University of Miami. Accessed June 24, 2019. https://scholarlyrepository.miami.edu/oa_dissertations/1917.

MLA Handbook (7^{th} Edition):

Cardona, Jorge Eduardo. “On Statistical Solutions of Evolution Equations.” 2017. Web. 24 Jun 2019.

Vancouver:

Cardona JE. On Statistical Solutions of Evolution Equations. [Internet] [Doctoral dissertation]. University of Miami; 2017. [cited 2019 Jun 24]. Available from: https://scholarlyrepository.miami.edu/oa_dissertations/1917.

Council of Science Editors:

Cardona JE. On Statistical Solutions of Evolution Equations. [Doctoral Dissertation]. University of Miami; 2017. Available from: https://scholarlyrepository.miami.edu/oa_dissertations/1917

University of Toronto

20.
Kamalinejad, Ehsan.
An Optimal Transport Approach to Nonlinear *Evolution* * Equations*.

Degree: 2012, University of Toronto

URL: http://hdl.handle.net/1807/34071

►

Gradient flows of energy functionals on the space of probability measures with Wasserstein metric has proved to be a strong tool in studying certain mass… (more)

Subjects/Keywords: Nonlinear Evolution Equations; Optimal Transport; Wasserstein Gradient Flows; Well-posedness; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kamalinejad, E. (2012). An Optimal Transport Approach to Nonlinear Evolution Equations. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/34071

Chicago Manual of Style (16^{th} Edition):

Kamalinejad, Ehsan. “An Optimal Transport Approach to Nonlinear Evolution Equations.” 2012. Doctoral Dissertation, University of Toronto. Accessed June 24, 2019. http://hdl.handle.net/1807/34071.

MLA Handbook (7^{th} Edition):

Kamalinejad, Ehsan. “An Optimal Transport Approach to Nonlinear Evolution Equations.” 2012. Web. 24 Jun 2019.

Vancouver:

Kamalinejad E. An Optimal Transport Approach to Nonlinear Evolution Equations. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1807/34071.

Council of Science Editors:

Kamalinejad E. An Optimal Transport Approach to Nonlinear Evolution Equations. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/34071

Georgia Tech

21. Shirani, Farshad. Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex.

Degree: PhD, Aerospace Engineering, 2018, Georgia Tech

URL: http://hdl.handle.net/1853/59884

► Electroencephalographic recordings from the scalp provide essential measures of mesoscopic electrical activity in the neocortex. The rhythmic patterns of variations observed in the electroencephalogram result…
(more)

Subjects/Keywords: Mathematical neuroscience; Neocortical dynamics; Mean field model; Evolution equations; Global attractors

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shirani, F. (2018). Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/59884

Chicago Manual of Style (16^{th} Edition):

Shirani, Farshad. “Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex.” 2018. Doctoral Dissertation, Georgia Tech. Accessed June 24, 2019. http://hdl.handle.net/1853/59884.

MLA Handbook (7^{th} Edition):

Shirani, Farshad. “Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex.” 2018. Web. 24 Jun 2019.

Vancouver:

Shirani F. Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1853/59884.

Council of Science Editors:

Shirani F. Mathematical analysis of a mean field model of electroencephalographic activity in the neocortex. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/59884

Florida Atlantic University

22. Acharya, Cheban P. On the spectrum of positive operators.

Degree: PhD, 2012, Florida Atlantic University

URL: http://purl.flvc.org/FAU/3359288

►

Summary: Spectral theory, mathematical system theory, *evolution* *equations*, differential and difference *equations* [electronic resource] : 21st International Workshop on Operator Theory and Applications, Berlin, July…
(more)

Subjects/Keywords: Operator theory; Evolution equations; Banach spaces; Linear topological spaces; Functional analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Acharya, C. P. (2012). On the spectrum of positive operators. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/3359288

Chicago Manual of Style (16^{th} Edition):

Acharya, Cheban P. “On the spectrum of positive operators.” 2012. Doctoral Dissertation, Florida Atlantic University. Accessed June 24, 2019. http://purl.flvc.org/FAU/3359288.

MLA Handbook (7^{th} Edition):

Acharya, Cheban P. “On the spectrum of positive operators.” 2012. Web. 24 Jun 2019.

Vancouver:

Acharya CP. On the spectrum of positive operators. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2012. [cited 2019 Jun 24]. Available from: http://purl.flvc.org/FAU/3359288.

Council of Science Editors:

Acharya CP. On the spectrum of positive operators. [Doctoral Dissertation]. Florida Atlantic University; 2012. Available from: http://purl.flvc.org/FAU/3359288

23. Camila Leão Cardozo. Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira.

Degree: 2012, Universidade Estadual de Londrina

URL: http://www.bibliotecadigital.uel.br/document/?code=vtls000170731

►

Neste trabalho estamos interessados na existência, unicidade e na taxa de decaimento de solução para problemas de vigas extensíveis com amortecimento não linear na fronteira… (more)

Subjects/Keywords: Equações diferenciais parciais; Galerkin; Métodos de; Espaços de funções; Differential equations; Equações de evolução; Partial; Galerkin methods; Evolution equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cardozo, C. L. (2012). Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira. (Thesis). Universidade Estadual de Londrina. Retrieved from http://www.bibliotecadigital.uel.br/document/?code=vtls000170731

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cardozo, Camila Leão. “Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira.” 2012. Thesis, Universidade Estadual de Londrina. Accessed June 24, 2019. http://www.bibliotecadigital.uel.br/document/?code=vtls000170731.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cardozo, Camila Leão. “Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira.” 2012. Web. 24 Jun 2019.

Vancouver:

Cardozo CL. Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira. [Internet] [Thesis]. Universidade Estadual de Londrina; 2012. [cited 2019 Jun 24]. Available from: http://www.bibliotecadigital.uel.br/document/?code=vtls000170731.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cardozo CL. Problemas dissipativos de vigas extensíveis com amortecimento não linear na fronteira. [Thesis]. Universidade Estadual de Londrina; 2012. Available from: http://www.bibliotecadigital.uel.br/document/?code=vtls000170731

Not specified: Masters Thesis or Doctoral Dissertation

University of Tennessee – Knoxville

24. Allen, Brian Daniel. Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space.

Degree: 2016, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/3675

► We investigate Inverse Mean Curvature Flow (IMCF) of non-compact hypersurfaces in hyperbolic space. Specifically, we look at bounded graphs over horospheres in Hyperbolic space and…
(more)

Subjects/Keywords: Geometric Analysis; Differential Geometry; Geometric Evolution Equations; Non-Compact Maximum Principles; Geometry and Topology; Partial Differential Equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Allen, B. D. (2016). Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3675

Chicago Manual of Style (16^{th} Edition):

Allen, Brian Daniel. “Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space.” 2016. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed June 24, 2019. https://trace.tennessee.edu/utk_graddiss/3675.

MLA Handbook (7^{th} Edition):

Allen, Brian Daniel. “Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space.” 2016. Web. 24 Jun 2019.

Vancouver:

Allen BD. Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2016. [cited 2019 Jun 24]. Available from: https://trace.tennessee.edu/utk_graddiss/3675.

Council of Science Editors:

Allen BD. Non-Compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2016. Available from: https://trace.tennessee.edu/utk_graddiss/3675

University of Lund

25. Henningsson, Erik. Spatial and Physical Splittings of Semilinear Parabolic Problems.

Degree: 2016, University of Lund

URL: http://lup.lub.lu.se/record/f269ee3d-6742-43b7-b045-d5409aae0d74 ; http://portal.research.lu.se/ws/files/16026998/Kappa.pdf

► Splitting methods are widely used temporal approximation schemes for parabolic partial differential *equations* (PDEs). These schemes may be very efficient when a problem can be…
(more)

Subjects/Keywords: Beräkningsmatematik; Teknik och teknologier; splitting schemes; parabolic equations; semilinear; evolution equations; dissipative; convergence order; dimension splitting; domain decomposition; axonal growth

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Henningsson, E. (2016). Spatial and Physical Splittings of Semilinear Parabolic Problems. (Doctoral Dissertation). University of Lund. Retrieved from http://lup.lub.lu.se/record/f269ee3d-6742-43b7-b045-d5409aae0d74 ; http://portal.research.lu.se/ws/files/16026998/Kappa.pdf

Chicago Manual of Style (16^{th} Edition):

Henningsson, Erik. “Spatial and Physical Splittings of Semilinear Parabolic Problems.” 2016. Doctoral Dissertation, University of Lund. Accessed June 24, 2019. http://lup.lub.lu.se/record/f269ee3d-6742-43b7-b045-d5409aae0d74 ; http://portal.research.lu.se/ws/files/16026998/Kappa.pdf.

MLA Handbook (7^{th} Edition):

Henningsson, Erik. “Spatial and Physical Splittings of Semilinear Parabolic Problems.” 2016. Web. 24 Jun 2019.

Vancouver:

Henningsson E. Spatial and Physical Splittings of Semilinear Parabolic Problems. [Internet] [Doctoral dissertation]. University of Lund; 2016. [cited 2019 Jun 24]. Available from: http://lup.lub.lu.se/record/f269ee3d-6742-43b7-b045-d5409aae0d74 ; http://portal.research.lu.se/ws/files/16026998/Kappa.pdf.

Council of Science Editors:

Henningsson E. Spatial and Physical Splittings of Semilinear Parabolic Problems. [Doctoral Dissertation]. University of Lund; 2016. Available from: http://lup.lub.lu.se/record/f269ee3d-6742-43b7-b045-d5409aae0d74 ; http://portal.research.lu.se/ws/files/16026998/Kappa.pdf

University of KwaZulu-Natal

26.
[No author].
A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order *evolution* *equations*.

Degree: 2015, University of KwaZulu-Natal

URL: http://hdl.handle.net/10413/14021

► In this study Spectral Quasilinearisation Method (SQLM) coupled with finite differ- ence and Bivariate Spectral Quasilinearisation Method (BSQLM) in solving second order nonlinear *evolution* partial…
(more)

Subjects/Keywords: Chebyshev systems.; Spectral sequences (Mathematics); Collocation methods.; Evolution equations, Nonlinear.; Applied mathematics.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

author], [. (2015). A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order evolution equations. (Thesis). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/14021

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

author], [No. “A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order evolution equations. ” 2015. Thesis, University of KwaZulu-Natal. Accessed June 24, 2019. http://hdl.handle.net/10413/14021.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

author], [No. “A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order evolution equations. ” 2015. Web. 24 Jun 2019.

Vancouver:

author] [. A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order evolution equations. [Internet] [Thesis]. University of KwaZulu-Natal; 2015. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/10413/14021.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. A comparison study of Chebyshev spectral collocation based methods for solving nonlinear second order evolution equations. [Thesis]. University of KwaZulu-Natal; 2015. Available from: http://hdl.handle.net/10413/14021

Not specified: Masters Thesis or Doctoral Dissertation

27. Jordon, Daniel. Spectral Properties of Differential Operators with Vanishing Coefficients.

Degree: 2013, Drexel University

URL: http://hdl.handle.net/1860/4185

►

The purpose of this thesis is to ascertain whether linear differential operators with vanishing coefficients make suitable operators for Cauchy problems. Well-posedness for linear Cauchy… (more)

Subjects/Keywords: Mathematics; Cauchy problem; Evolution equations

…*equations* where the operator A also depends on t. Such *evolution*
*equations* are called non… …the linear operators that arise out of dispersive non-linear partial differential *equations*… …analyze the linear stability of a solution to an *evolution* equation, it is both necessary and… …is not Fredholm with Fredholm index zero. Second, this suggests that
*evolution* models such… …autonomous *evolution*
equation
ut (x, t) − Au(x, t) = 0
for (x, t…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jordon, D. (2013). Spectral Properties of Differential Operators with Vanishing Coefficients. (Thesis). Drexel University. Retrieved from http://hdl.handle.net/1860/4185

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jordon, Daniel. “Spectral Properties of Differential Operators with Vanishing Coefficients.” 2013. Thesis, Drexel University. Accessed June 24, 2019. http://hdl.handle.net/1860/4185.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jordon, Daniel. “Spectral Properties of Differential Operators with Vanishing Coefficients.” 2013. Web. 24 Jun 2019.

Vancouver:

Jordon D. Spectral Properties of Differential Operators with Vanishing Coefficients. [Internet] [Thesis]. Drexel University; 2013. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1860/4185.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jordon D. Spectral Properties of Differential Operators with Vanishing Coefficients. [Thesis]. Drexel University; 2013. Available from: http://hdl.handle.net/1860/4185

Not specified: Masters Thesis or Doctoral Dissertation

University of Rochester

28. Groves, Elizabeth (1981 - ). Soliton solutions for high-bandwidth optical pulse storage and retrieval.

Degree: PhD, 2013, University of Rochester

URL: http://hdl.handle.net/1802/27215

► Quantum-optical information processing in material systems requires on-demand manipulation and precision control techniques. Previous implementations of optical pulse control have mostly been limited to weak,…
(more)

Subjects/Keywords: Broadband storage; Nonlinear evolution equations; Optical information; Quantum coherence; Short laser pulse propagation; Solitons

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Groves, E. (. -. ). (2013). Soliton solutions for high-bandwidth optical pulse storage and retrieval. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27215

Chicago Manual of Style (16^{th} Edition):

Groves, Elizabeth (1981 - ). “Soliton solutions for high-bandwidth optical pulse storage and retrieval.” 2013. Doctoral Dissertation, University of Rochester. Accessed June 24, 2019. http://hdl.handle.net/1802/27215.

MLA Handbook (7^{th} Edition):

Groves, Elizabeth (1981 - ). “Soliton solutions for high-bandwidth optical pulse storage and retrieval.” 2013. Web. 24 Jun 2019.

Vancouver:

Groves E(-). Soliton solutions for high-bandwidth optical pulse storage and retrieval. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2019 Jun 24]. Available from: http://hdl.handle.net/1802/27215.

Council of Science Editors:

Groves E(-). Soliton solutions for high-bandwidth optical pulse storage and retrieval. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27215

29. Carvalho, Fábio Henrique de. O grupo de Schrödinger em espaços de Zhidkov.

Degree: 2010, Universidade Federal de Alagoas

URL: http://www.repositorio.ufal.br/handle/riufal/1045

►

This work is dedicated to the local and global well-possednes study of Cauchy s Problem associated to the nonlinear Schrödinger equation, to the initial data… (more)

Subjects/Keywords: Equações diferenciais parciais; Equações de evolução; Equação de Schrödinger; Espaços de Zhidkov; Partial differential equations; Evolution equations; Schrödinger equation; Zhidkov spaces; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carvalho, F. H. d. (2010). O grupo de Schrödinger em espaços de Zhidkov. (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/1045

Chicago Manual of Style (16^{th} Edition):

Carvalho, Fábio Henrique de. “O grupo de Schrödinger em espaços de Zhidkov.” 2010. Masters Thesis, Universidade Federal de Alagoas. Accessed June 24, 2019. http://www.repositorio.ufal.br/handle/riufal/1045.

MLA Handbook (7^{th} Edition):

Carvalho, Fábio Henrique de. “O grupo de Schrödinger em espaços de Zhidkov.” 2010. Web. 24 Jun 2019.

Vancouver:

Carvalho FHd. O grupo de Schrödinger em espaços de Zhidkov. [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2010. [cited 2019 Jun 24]. Available from: http://www.repositorio.ufal.br/handle/riufal/1045.

Council of Science Editors:

Carvalho FHd. O grupo de Schrödinger em espaços de Zhidkov. [Masters Thesis]. Universidade Federal de Alagoas; 2010. Available from: http://www.repositorio.ufal.br/handle/riufal/1045

Hong Kong University of Science and Technology

30.
Tang, Shao Qiang.
Dissipative nonlinear *evolution* *equations* and chaos.

Degree: 1995, Hong Kong University of Science and Technology

URL: https://doi.org/10.14711/thesis-b491083 ; http://repository.ust.hk/ir/bitstream/1783.1-1560/1/th_redirect.html

► In this thesis we have studied the interaction between ellipticity and dissipation in the *equations* proposed by Hsieh, and established the relation between this interaction…
(more)

Subjects/Keywords: Evolution equations, Nonlinear; Differential equations, Partial; Chaotic behavior in systems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tang, S. Q. (1995). Dissipative nonlinear evolution equations and chaos. (Thesis). Hong Kong University of Science and Technology. Retrieved from https://doi.org/10.14711/thesis-b491083 ; http://repository.ust.hk/ir/bitstream/1783.1-1560/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Tang, Shao Qiang. “Dissipative nonlinear evolution equations and chaos.” 1995. Thesis, Hong Kong University of Science and Technology. Accessed June 24, 2019. https://doi.org/10.14711/thesis-b491083 ; http://repository.ust.hk/ir/bitstream/1783.1-1560/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Tang, Shao Qiang. “Dissipative nonlinear evolution equations and chaos.” 1995. Web. 24 Jun 2019.

Vancouver:

Tang SQ. Dissipative nonlinear evolution equations and chaos. [Internet] [Thesis]. Hong Kong University of Science and Technology; 1995. [cited 2019 Jun 24]. Available from: https://doi.org/10.14711/thesis-b491083 ; http://repository.ust.hk/ir/bitstream/1783.1-1560/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tang SQ. Dissipative nonlinear evolution equations and chaos. [Thesis]. Hong Kong University of Science and Technology; 1995. Available from: https://doi.org/10.14711/thesis-b491083 ; http://repository.ust.hk/ir/bitstream/1783.1-1560/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation