Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(diboron reagent). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Virginia Tech

1. Thorpe, Steven Brandon. Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds.

Degree: PhD, Chemistry, 2012, Virginia Tech

The first successful synthesis and isolation of a boronic acid was reported in 1860 by Frankland in the pursuit of novel organometallic compounds. For more than a century, further studies of boronic acids were sparsely published. Suzuki and Miyaura jumpstarted the field in 1979 with an innovative carbon-carbon bond forming reaction employing an organoboronic acid and a carbon halide under palladium catalysis. Indeed, the Nobel Prize in Chemistry was awarded to Professor Akira Suzuki, along with Professors Richard Heck and Ei-ichi Negishi, in 2010 for their important contributions in palladium-catalyzed cross-coupling chemistry. Over the last 30 years, reports on organoboron compounds have increased exponentially. This dissertation describes the authorâ s contributions to the development of preparative methods for organoboronic acid derivatives using transition metal-catalyzed reactions of diboron reagents. A unique â mixedâ diboron reagent was developed (PDIPA diboron) that contains sp2- and sp3-hybridized boron atoms, unambiguously confirmed by X-ray crystallography. PDIPA diboron is sufficiently activated internally through a dative-bonding amine to selectively transfer the sp2-hybridized boron regioselectively, in the presence of copper, to electron deficient alkenes including α,β-unsaturated ketones, esters, amides, aldehydes, and nitriles to provide the corresponding boratohomoenolates. A unique β,β-diboration of an α,β-acetylenic ketone was also discovered. The scope of PDIPA diboron reactions was then expanded to a set of substrates with a more complex structural backbone. Allenoates are α,β,γ-unsaturated esters with orthogonal pi systems, which pose several possible difficulties with the regioselectivity of addition, not to mention known isomerizations catalyzed by copper. However, we successfully installed the boron moiety regioselectively on the β-carbon of a variety of allenoates, providing a vinyl boronic ester, and also observed exclusive formation of the (Z)-isomer from racemic starting materials. The resulting vinyl boronic ester was then shown to be an excellent Suzuki-Miyaura cross-coupling partner, affording a diastereopure, trisubstituted alkene in quantitative yield. Commercially available bis(pinacolato)diboron has shown remarkable stability towards hydrolysis and autoxidation. Using this reagent, we developed a copper- and amine-catalyzed boration protocol performed entirely in water and open to air. Using only 1 mol% copper, extraordinary activity was observed. UV-Vis, 11B NMR, and solvent kinetic isotope experiments were employed to gain insight into the mechanism, which showed the possibility of autocatalysis. Attempts to control stereoselectivity were not successful, although these results were rationalized by a dynamic catalyst structure. Advisors/Committee Members: Santos, Webster L. (committeechair), Carlier, Paul R. (committee member), Tanko, James M. (committee member), Kingston, David G. I. (committee member).

Subjects/Keywords: borylation; diboron reagent; boronic ester; conjugate addition; copper catalysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thorpe, S. B. (2012). Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26669

Chicago Manual of Style (16th Edition):

Thorpe, Steven Brandon. “Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds.” 2012. Doctoral Dissertation, Virginia Tech. Accessed October 14, 2019. http://hdl.handle.net/10919/26669.

MLA Handbook (7th Edition):

Thorpe, Steven Brandon. “Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds.” 2012. Web. 14 Oct 2019.

Vancouver:

Thorpe SB. Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/10919/26669.

Council of Science Editors:

Thorpe SB. Activation of diboron reagents: The development of mild conditions for the synthesis of unique organoboron compounds. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/26669

.