Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(cyclic cohomology). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


The Ohio State University

1. Yang, Tao. Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras.

Degree: PhD, Mathematics, 2015, The Ohio State University

 We construct a Hopf action, with an invariant trace, of a bicrossed product Hopf algebra \cH=\big( \cU(\Fg1) \acr \cR(G2) \big)\cop constructed from a matched pair… (more)

Subjects/Keywords: Mathematics; Hopf Cyclic Cohomology, Bicrossed Product

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, T. (2015). Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022

Chicago Manual of Style (16th Edition):

Yang, Tao. “Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras.” 2015. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022.

MLA Handbook (7th Edition):

Yang, Tao. “Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras.” 2015. Web. 27 Oct 2020.

Vancouver:

Yang T. Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 2015. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022.

Council of Science Editors:

Yang T. Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. [Doctoral Dissertation]. The Ohio State University; 2015. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022


University of Colorado

2. Belcher, Jonathan Adam. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.

Degree: PhD, 2019, University of Colorado

 The connection between Hochschild and cyclic cohomologies with generalized De Rham homology and index theories for arbitrary algebras has long been established by the work… (more)

Subjects/Keywords: cyclic cohomology; global analysis; hochschild cohomology; manifolds with boundary; Geometry and Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belcher, J. A. (2019). Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/69

Chicago Manual of Style (16th Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Doctoral Dissertation, University of Colorado. Accessed October 27, 2020. https://scholar.colorado.edu/math_gradetds/69.

MLA Handbook (7th Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Web. 27 Oct 2020.

Vancouver:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Oct 27]. Available from: https://scholar.colorado.edu/math_gradetds/69.

Council of Science Editors:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/69


The Ohio State University

3. Tamás, Antal. Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras.

Degree: PhD, Mathematics, 2004, The Ohio State University

  This dissertation aims to contribute to the cyclic cohomology theory of Hopf algebras as defined by Connes and Moscovici. To date, the most important… (more)

Subjects/Keywords: Mathematics; cyclic cohomology; Hopf algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tamás, A. (2004). Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186

Chicago Manual of Style (16th Edition):

Tamás, Antal. “Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras.” 2004. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186.

MLA Handbook (7th Edition):

Tamás, Antal. “Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras.” 2004. Web. 27 Oct 2020.

Vancouver:

Tamás A. Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 2004. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186.

Council of Science Editors:

Tamás A. Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. [Doctoral Dissertation]. The Ohio State University; 2004. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186


University of Gothenburg / Göteborgs Universitet

4. Goffeng, Magnus. Index theory in geometry and physics.

Degree: 2011, University of Gothenburg / Göteborgs Universitet

 This thesis contains three papers in the area of index theory and its applications in geometry and mathematical physics. These papers deal with the problems… (more)

Subjects/Keywords: Index theory; Cyclic cohomology; Regularized index formulas; Toeplitz operators; Pseudo-differential operators; Quantum Hall effect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goffeng, M. (2011). Index theory in geometry and physics. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed October 27, 2020. http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Web. 27 Oct 2020.

Vancouver:

Goffeng M. Index theory in geometry and physics. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Goffeng M. Index theory in geometry and physics. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. Available from: http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Soares, Marcio de Jesus. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.

Degree: PhD, Matemática, 2008, University of São Paulo

Neste trabalho inicialmente estudamos o rank da co-homologia do espaço dos pontos fixos de uma \'Z IND.p-́ ação semilivre sobre espaços X~p Ś POT. nx́… (more)

Subjects/Keywords: Co-homologia de Tate; Co-homologia equivariante; Equivariant cohomology; fixed point.; grupos virtualmente cíclicos; ponto fixo.; produto de esferas; sphere product; Tate Cohomology; virtually cyclic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Soares, M. d. J. (2008). Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;

Chicago Manual of Style (16th Edition):

Soares, Marcio de Jesus. “Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.” 2008. Doctoral Dissertation, University of São Paulo. Accessed October 27, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;.

MLA Handbook (7th Edition):

Soares, Marcio de Jesus. “Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.” 2008. Web. 27 Oct 2020.

Vancouver:

Soares MdJ. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Oct 27]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;.

Council of Science Editors:

Soares MdJ. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;

6. Cervantes, José Rodrigo. Hopf algebras associated to transitive pseudogroups in codimension 2.

Degree: PhD, Mathematics, 2016, The Ohio State University

 We associate two different Hopf algebras to the same transitive but not primitive pseudogrup of local diffeomorphisms on R2 leaving invariant the trivial foliation where… (more)

Subjects/Keywords: Mathematics; Hopf algebras; Hopf cyclic cohomology; Bicrossed Product; Lie algebra cohomology

…Lie theory, quantum mechanics, etc. On the other hand, cyclic cohomology was discovered by… …is shown that the periodic Hopf cyclic cohomology for each Hop algebra HH is canonically… …if q ≥ p,   0, 14 if q < p, 0 ≤ i ≤ n. Definition 2.1.6. The cyclic cohomology HC… …x28;−1)n τn+1 ) . i=0 A variant of the cyclic cohomology is the periodic cyclic… …example was constructed in the paper of Heinz Hopf in his computation of the rational cohomology… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cervantes, J. R. (2016). Hopf algebras associated to transitive pseudogroups in codimension 2. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006

Chicago Manual of Style (16th Edition):

Cervantes, José Rodrigo. “Hopf algebras associated to transitive pseudogroups in codimension 2.” 2016. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006.

MLA Handbook (7th Edition):

Cervantes, José Rodrigo. “Hopf algebras associated to transitive pseudogroups in codimension 2.” 2016. Web. 27 Oct 2020.

Vancouver:

Cervantes JR. Hopf algebras associated to transitive pseudogroups in codimension 2. [Internet] [Doctoral dissertation]. The Ohio State University; 2016. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006.

Council of Science Editors:

Cervantes JR. Hopf algebras associated to transitive pseudogroups in codimension 2. [Doctoral Dissertation]. The Ohio State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006

7. Laubacher, Jacob C. Secondary Hochschild and Cyclic (Co)homologies.

Degree: PhD, Mathematics, 2017, Bowling Green State University

 Hochschild cohomology was originally introduced in 1945. Much more recently in 2013 a generalization of this theory, the secondary Hochschild cohomology, was brought to light.… (more)

Subjects/Keywords: Mathematics; homological algebra; deformation theory; associative rings and algebras; Hochschild cohomology; cyclic cohomology

cohomology, B(A, B, ε) was employed to define a secondary homology, as well as cyclic… …to define cyclic (co)homology. For cohomology, we first define λn : Homk (A… …denoted HCn (A) and is called the cyclic cohomology of A. For cyclic homology we… …2 importantly, the Hochschild and cyclic homologies were united in Connes’ long exact… …the cohomology, and both have proved useful for computations. In 2013 Staic introduced the… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laubacher, J. C. (2017). Secondary Hochschild and Cyclic (Co)homologies. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758

Chicago Manual of Style (16th Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

MLA Handbook (7th Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Web. 27 Oct 2020.

Vancouver:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

Council of Science Editors:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758


Universiteit Utrecht

8. Crainic, M. Cyclic cohomology and characteristic classes for foliations.

Degree: 2000, Universiteit Utrecht

 This thesis deals with the cohomology theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between… (more)

Subjects/Keywords: Wiskunde en Informatica; non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/849

Chicago Manual of Style (16th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, Universiteit Utrecht. Accessed October 27, 2020. http://dspace.library.uu.nl:8080/handle/1874/849.

MLA Handbook (7th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 27 Oct 2020.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2000. [cited 2020 Oct 27]. Available from: http://dspace.library.uu.nl:8080/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. Universiteit Utrecht; 2000. Available from: http://dspace.library.uu.nl:8080/handle/1874/849

9. Martins, Sergio Tadao. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.

Degree: PhD, Matemática, 2012, University of São Paulo

Dado um grupo G, a definição dos grupos de cohomologia com coeficientes em um ZG-módulo M podem ser dadas usando as técnicas usuais da Álgebra… (more)

Subjects/Keywords: aproximação da diagonal; cohomologia de grupos; cohomology of groups; diagonal approximationm; fibrados do toro; free resolutions; fundamental groups of surfaces; grupos fundamentais das superfícies; grupos virtualmente cíclicos.; resoluções livres; torus bundles; virtually cyclic groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martins, S. T. (2012). Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;

Chicago Manual of Style (16th Edition):

Martins, Sergio Tadao. “Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.” 2012. Doctoral Dissertation, University of São Paulo. Accessed October 27, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;.

MLA Handbook (7th Edition):

Martins, Sergio Tadao. “Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.” 2012. Web. 27 Oct 2020.

Vancouver:

Martins ST. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. [Internet] [Doctoral dissertation]. University of São Paulo; 2012. [cited 2020 Oct 27]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;.

Council of Science Editors:

Martins ST. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. [Doctoral Dissertation]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;

10. Crainic, M. Cyclic cohomology and characteristic classes for foliations.

Degree: 2000, University Utrecht

 This thesis deals with the cohomology theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between… (more)

Subjects/Keywords: non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849

Chicago Manual of Style (16th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, University Utrecht. Accessed October 27, 2020. https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849.

MLA Handbook (7th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 27 Oct 2020.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. University Utrecht; 2000. [cited 2020 Oct 27]. Available from: https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. University Utrecht; 2000. Available from: https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849


ETH Zürich

11. Willwacher, Thomas. Cyclic formality.

Degree: 2009, ETH Zürich

Subjects/Keywords: ZYKLISCHE KOHOMOLOGIE (ALGEBRAISCHE GEOMETRIE); GRADUIERTE ALGEBREN (ALGEBRA); LIE-RINGE UND LIE-ALGEBREN (ALGEBRA); DIFFERENTIALOPERATOREN + INTEGRALOPERATOREN AUF MANNIGFALTIGKEITEN (TOPOLOGIE); CYCLIC COHOMOLOGY (ALGEBRAIC GEOMETRY); GRADED ALGEBRAS (ALGEBRA); LIE RINGS AND LIE ALGEBRAS (ALGEBRA); DIFFERENTIAL + INTEGRAL OPERATORS ON MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Willwacher, T. (2009). Cyclic formality. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151769

Chicago Manual of Style (16th Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Doctoral Dissertation, ETH Zürich. Accessed October 27, 2020. http://hdl.handle.net/20.500.11850/151769.

MLA Handbook (7th Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Web. 27 Oct 2020.

Vancouver:

Willwacher T. Cyclic formality. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/20.500.11850/151769.

Council of Science Editors:

Willwacher T. Cyclic formality. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151769

.