Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(cyclic cohomology)`

.
Showing records 1 – 11 of
11 total matches.

▼ Search Limiters

The Ohio State University

1.
Yang, Tao.
Explicit Realization of Hopf *Cyclic* *Cohomology* Classes of
Bicrossed Product Hopf Algebras.

Degree: PhD, Mathematics, 2015, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022

► We construct a Hopf action, with an invariant trace, of a bicrossed product Hopf algebra \cH=\big( \cU(\Fg_{1}) \acr \cR(G_{2}) \big)^{\cop} constructed from a matched pair…
(more)

Subjects/Keywords: Mathematics; Hopf Cyclic Cohomology, Bicrossed Product

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yang, T. (2015). Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022

Chicago Manual of Style (16^{th} Edition):

Yang, Tao. “Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras.” 2015. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022.

MLA Handbook (7^{th} Edition):

Yang, Tao. “Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras.” 2015. Web. 27 Oct 2020.

Vancouver:

Yang T. Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 2015. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022.

Council of Science Editors:

Yang T. Explicit Realization of Hopf Cyclic Cohomology Classes of Bicrossed Product Hopf Algebras. [Doctoral Dissertation]. The Ohio State University; 2015. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1440166022

University of Colorado

2.
Belcher, Jonathan Adam.
Bridge *Cohomology*: a Generalization of Hochschild and *Cyclic* Cohomologies.

Degree: PhD, 2019, University of Colorado

URL: https://scholar.colorado.edu/math_gradetds/69

► The connection between Hochschild and *cyclic* cohomologies with generalized De Rham homology and index theories for arbitrary algebras has long been established by the work…
(more)

Subjects/Keywords: cyclic cohomology; global analysis; hochschild cohomology; manifolds with boundary; Geometry and Topology; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Belcher, J. A. (2019). Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/69

Chicago Manual of Style (16^{th} Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Doctoral Dissertation, University of Colorado. Accessed October 27, 2020. https://scholar.colorado.edu/math_gradetds/69.

MLA Handbook (7^{th} Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Web. 27 Oct 2020.

Vancouver:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Oct 27]. Available from: https://scholar.colorado.edu/math_gradetds/69.

Council of Science Editors:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/69

The Ohio State University

3.
Tamás, Antal.
* Cyclic* cohomological computations for the
Connes-Moscovici-Kreimer Hopf algebras.

Degree: PhD, Mathematics, 2004, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186

► This dissertation aims to contribute to the *cyclic* *cohomology* theory of Hopf algebras as defined by Connes and Moscovici. To date, the most important…
(more)

Subjects/Keywords: Mathematics; cyclic cohomology; Hopf algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tamás, A. (2004). Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186

Chicago Manual of Style (16^{th} Edition):

Tamás, Antal. “Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras.” 2004. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186.

MLA Handbook (7^{th} Edition):

Tamás, Antal. “Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras.” 2004. Web. 27 Oct 2020.

Vancouver:

Tamás A. Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. [Internet] [Doctoral dissertation]. The Ohio State University; 2004. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186.

Council of Science Editors:

Tamás A. Cyclic cohomological computations for the Connes-Moscovici-Kreimer Hopf algebras. [Doctoral Dissertation]. The Ohio State University; 2004. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1092777186

University of Gothenburg / Göteborgs Universitet

4. Goffeng, Magnus. Index theory in geometry and physics.

Degree: 2011, University of Gothenburg / Göteborgs Universitet

URL: http://hdl.handle.net/2077/24979

► This thesis contains three papers in the area of index theory and its applications in geometry and mathematical physics. These papers deal with the problems…
(more)

Subjects/Keywords: Index theory; Cyclic cohomology; Regularized index formulas; Toeplitz operators; Pseudo-differential operators; Quantum Hall effect

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Goffeng, M. (2011). Index theory in geometry and physics. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed October 27, 2020. http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Web. 27 Oct 2020.

Vancouver:

Goffeng M. Index theory in geometry and physics. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Goffeng M. Index theory in geometry and physics. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. Available from: http://hdl.handle.net/2077/24979

Not specified: Masters Thesis or Doctoral Dissertation

5. Soares, Marcio de Jesus. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.

Degree: PhD, Matemática, 2008, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;

►

Neste trabalho inicialmente estudamos o rank da co-homologia do espaço dos pontos fixos de uma \'Z IND.p-́ ação semilivre sobre espaços X~p Ś POT. nx́… (more)

Subjects/Keywords: Co-homologia de Tate; Co-homologia equivariante; Equivariant cohomology; fixed point.; grupos virtualmente cíclicos; ponto fixo.; produto de esferas; sphere product; Tate Cohomology; virtually cyclic groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Soares, M. d. J. (2008). Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;

Chicago Manual of Style (16^{th} Edition):

Soares, Marcio de Jesus. “Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.” 2008. Doctoral Dissertation, University of São Paulo. Accessed October 27, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;.

MLA Handbook (7^{th} Edition):

Soares, Marcio de Jesus. “Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate.” 2008. Web. 27 Oct 2020.

Vancouver:

Soares MdJ. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Oct 27]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;.

Council of Science Editors:

Soares MdJ. Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/ ;

6. Cervantes, José Rodrigo. Hopf algebras associated to transitive pseudogroups in codimension 2.

Degree: PhD, Mathematics, 2016, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006

► We associate two different Hopf algebras to the same transitive but not primitive pseudogrup of local diffeomorphisms on R^{2} leaving invariant the trivial foliation where…
(more)

Subjects/Keywords: Mathematics; Hopf algebras; Hopf cyclic cohomology; Bicrossed Product; Lie algebra cohomology

…Lie
theory, quantum mechanics, etc.
On the other hand, *cyclic* *cohomology* was discovered by… …is shown that the periodic Hopf *cyclic* *cohomology* for each
Hop algebra HH is canonically… …if q ≥ p,
0,
14
if q < p,
0 ≤ i ≤ n.
Definition 2.1.6. The *cyclic* *cohomology* HC… …x28;−1)n τn+1 ) .
i=0
A variant of the *cyclic* *cohomology* is the periodic *cyclic*… …example was
constructed in the paper of Heinz Hopf in his computation of the rational *cohomology*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cervantes, J. R. (2016). Hopf algebras associated to transitive pseudogroups in codimension 2. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006

Chicago Manual of Style (16^{th} Edition):

Cervantes, José Rodrigo. “Hopf algebras associated to transitive pseudogroups in codimension 2.” 2016. Doctoral Dissertation, The Ohio State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006.

MLA Handbook (7^{th} Edition):

Cervantes, José Rodrigo. “Hopf algebras associated to transitive pseudogroups in codimension 2.” 2016. Web. 27 Oct 2020.

Vancouver:

Cervantes JR. Hopf algebras associated to transitive pseudogroups in codimension 2. [Internet] [Doctoral dissertation]. The Ohio State University; 2016. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006.

Council of Science Editors:

Cervantes JR. Hopf algebras associated to transitive pseudogroups in codimension 2. [Doctoral Dissertation]. The Ohio State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1452041006

7.
Laubacher, Jacob C.
Secondary Hochschild and *Cyclic* (Co)homologies.

Degree: PhD, Mathematics, 2017, Bowling Green State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758

► Hochschild *cohomology* was originally introduced in 1945. Much more recently in 2013 a generalization of this theory, the secondary Hochschild *cohomology*, was brought to light.…
(more)

Subjects/Keywords: Mathematics; homological algebra; deformation theory; associative rings and algebras; Hochschild cohomology; cyclic cohomology

…*cohomology*,
B(A, B, ε) was employed to define a secondary homology, as well as *cyclic*… …to define *cyclic* (co)homology. For *cohomology*, we first define λn : Homk (A… …denoted HCn (A) and is called the
*cyclic* *cohomology* of A.
For *cyclic* homology we… …2
importantly, the Hochschild and *cyclic* homologies were united in Connes’ long exact… …the *cohomology*, and both have proved useful for
computations.
In 2013 Staic introduced the…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Laubacher, J. C. (2017). Secondary Hochschild and Cyclic (Co)homologies. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758

Chicago Manual of Style (16^{th} Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed October 27, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

MLA Handbook (7^{th} Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Web. 27 Oct 2020.

Vancouver:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Oct 27]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

Council of Science Editors:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758

Universiteit Utrecht

8.
Crainic, M.
*Cyclic**cohomology* and characteristic classes for foliations.

Degree: 2000, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/849

► This thesis deals with the *cohomology* theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between…
(more)

Subjects/Keywords: Wiskunde en Informatica; non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/849

Chicago Manual of Style (16^{th} Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, Universiteit Utrecht. Accessed October 27, 2020. http://dspace.library.uu.nl:8080/handle/1874/849.

MLA Handbook (7^{th} Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 27 Oct 2020.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2000. [cited 2020 Oct 27]. Available from: http://dspace.library.uu.nl:8080/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. Universiteit Utrecht; 2000. Available from: http://dspace.library.uu.nl:8080/handle/1874/849

9. Martins, Sergio Tadao. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.

Degree: PhD, Matemática, 2012, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;

►

Dado um grupo G, a definição dos grupos de cohomologia com coeficientes em um ZG-módulo M podem ser dadas usando as técnicas usuais da Álgebra… (more)

Subjects/Keywords: aproximação da diagonal; cohomologia de grupos; cohomology of groups; diagonal approximationm; fibrados do toro; free resolutions; fundamental groups of surfaces; grupos fundamentais das superfícies; grupos virtualmente cíclicos.; resoluções livres; torus bundles; virtually cyclic groups.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Martins, S. T. (2012). Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;

Chicago Manual of Style (16^{th} Edition):

Martins, Sergio Tadao. “Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.” 2012. Doctoral Dissertation, University of São Paulo. Accessed October 27, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;.

MLA Handbook (7^{th} Edition):

Martins, Sergio Tadao. “Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos.” 2012. Web. 27 Oct 2020.

Vancouver:

Martins ST. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. [Internet] [Doctoral dissertation]. University of São Paulo; 2012. [cited 2020 Oct 27]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;.

Council of Science Editors:

Martins ST. Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos. [Doctoral Dissertation]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25022013-105446/ ;

10.
Crainic, M.
*Cyclic**cohomology* and characteristic classes for foliations.

Degree: 2000, University Utrecht

URL: https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849

► This thesis deals with the *cohomology* theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between…
(more)

Subjects/Keywords: non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849

Chicago Manual of Style (16^{th} Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, University Utrecht. Accessed October 27, 2020. https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849.

MLA Handbook (7^{th} Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 27 Oct 2020.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. University Utrecht; 2000. [cited 2020 Oct 27]. Available from: https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. University Utrecht; 2000. Available from: https://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; https://dspace.library.uu.nl/handle/1874/849

ETH Zürich

11.
Willwacher, Thomas.
* Cyclic* formality.

Degree: 2009, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/151769

Subjects/Keywords: ZYKLISCHE KOHOMOLOGIE (ALGEBRAISCHE GEOMETRIE); GRADUIERTE ALGEBREN (ALGEBRA); LIE-RINGE UND LIE-ALGEBREN (ALGEBRA); DIFFERENTIALOPERATOREN + INTEGRALOPERATOREN AUF MANNIGFALTIGKEITEN (TOPOLOGIE); CYCLIC COHOMOLOGY (ALGEBRAIC GEOMETRY); GRADED ALGEBRAS (ALGEBRA); LIE RINGS AND LIE ALGEBRAS (ALGEBRA); DIFFERENTIAL + INTEGRAL OPERATORS ON MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Willwacher, T. (2009). Cyclic formality. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151769

Chicago Manual of Style (16^{th} Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Doctoral Dissertation, ETH Zürich. Accessed October 27, 2020. http://hdl.handle.net/20.500.11850/151769.

MLA Handbook (7^{th} Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Web. 27 Oct 2020.

Vancouver:

Willwacher T. Cyclic formality. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2020 Oct 27]. Available from: http://hdl.handle.net/20.500.11850/151769.

Council of Science Editors:

Willwacher T. Cyclic formality. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151769