Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(cutset inequalities). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Texas A&M University

1. Luo, Haochen. Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem.

Degree: PhD, Industrial Engineering, 2019, Texas A&M University

In this dissertation, we develop new methodologies and algorithms to solve the multi-module (survivable) network design problem. Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on arcs or edges. In most cases, network design problems of this type that have been studied involve different types of capacity sizes (modules), and we call them the multi-module capacitated network design (MMND) problem. MMND problems arise in various industrial applications, such as transportation, telecommunication, power grid, data centers, and oil production, among many others. In the first part of the dissertation, we study the polyhedral structure of the MMND problem. We summarize current literature on polyhedral study of MMND, which generates the family of the so-called cutset inequalities based on the traditional mixed integer rounding (MIR). We then introduce a new family of inequalities for MMND based on the so-called n-step MIR, and show that various classes of cutset inequalities in the literature are special cases of these inequalities. We do so by studying a mixed integer set, the cutset polyhedron, which is closely related to MMND. We We also study the strength of this family of inequalities by providing some facet-defining conditions. These inequalities are then tested on MMND instances, and our computational results show that these classes of inequalities are very effective for solving MMND problems. Generalizations of these inequalities for some variants of MMND are also discussed. Network design problems have many generalizations depending on the application. In the second part of the dissertation, we study a highly applicable form of SND, referred to as multi-module SND (MM-SND), in which transmission capacities on edges can be sum of integer multiples of differently sized capacity modules. For the first time, we formulate MM-SND as a mixed integer program (MIP) using preconfigured-cycles (p-cycles) to reroute flow on failed edges. We derive several classes of valid inequalities for this MIP, and show that the valid inequalities previously developed in the literature for single-module SND are special cases of our inequalities. Furthermore, we show that our valid inequalities are facet-defining for MM-SND in many cases. Our computational results, using a heuristic separation algorithm, show that these inequalities are very effective in solving MM-SND. In particular they are more effective than compared to using single-module inequalities alone. Lastly, we generalize the inequalities for MMND for other mixed integer sets relaxed from MMND and the cutset polyhedron. These inequalities also generalize several valid inequalities in the literature. We conclude the dissertation by summarizing the work and pointing out potential directions for future research. Advisors/Committee Members: Kianfar, Kiavash (advisor), Butenko, Sergiy (committee member), Moreno-Centeno, Erick (committee member), Chen, Jianer (committee member).

Subjects/Keywords: mixed-integer programming; network design; cutset inequalities; valid inequalities; n-step MIR

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, H. (2019). Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/188770

Chicago Manual of Style (16th Edition):

Luo, Haochen. “Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem.” 2019. Doctoral Dissertation, Texas A&M University. Accessed November 28, 2020. http://hdl.handle.net/1969.1/188770.

MLA Handbook (7th Edition):

Luo, Haochen. “Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem.” 2019. Web. 28 Nov 2020.

Vancouver:

Luo H. Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem. [Internet] [Doctoral dissertation]. Texas A&M University; 2019. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/1969.1/188770.

Council of Science Editors:

Luo H. Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem. [Doctoral Dissertation]. Texas A&M University; 2019. Available from: http://hdl.handle.net/1969.1/188770

.