Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(cobalt silicide). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. EDWIN ONG BIN LEONG. COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE.

Degree: 2010, National University of Singapore

Subjects/Keywords: Cobalt silicide nanostructures; Si(001); Shape evolution; Growth dynamics; Strain; Scaling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LEONG, E. O. B. (2010). COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/28461

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

LEONG, EDWIN ONG BIN. “COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE.” 2010. Thesis, National University of Singapore. Accessed October 20, 2019. http://scholarbank.nus.edu.sg/handle/10635/28461.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

LEONG, EDWIN ONG BIN. “COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE.” 2010. Web. 20 Oct 2019.

Vancouver:

LEONG EOB. COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2019 Oct 20]. Available from: http://scholarbank.nus.edu.sg/handle/10635/28461.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LEONG EOB. COBALT SILICIDE NANOSTRUCTURES ON SI(001) SURFACE. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/28461

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Paris-Sud – Paris XI

2. Yengui, Mayssa. Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits.

Degree: Docteur es, Physique, 2014, Université Paris-Sud – Paris XI

L’objectif globale de cette thèse est l’étude de la croissance de plots de siliciure de cobalt (CoSi2) individuels combinés à une surface semi-isolante de silicium hydrogénée (Si(100):H) afin de créer un environnement propice à l’interconnexion de molécules fonctionnalisées, prémisse des circuits moléculaires. Cette étude, liée au contexte de l’électronique moléculaire ascendante, est réalisée à l’aide d’un microscope à effet tunnel (STM) à basse température (9 K) sous ultra-vide. Ce travail de thèse débute par l’étude de l’adsorption d’atomes de Co, à basse température (12 K) sur la surface de Si(100)-2x1. Nos investigations nous ont permis d’observer, pour la première fois, des sites d’adsorption à la surface et des sites interstitiels métastables en surface et subsurface. Grâce aux excitations électroniques induites par les électrons tunnels, certains sites d’adsorption ont pu être manipulés sur la surface de Si(100). Cette étude préliminaire est suivie par la croissance de plots de siliciure de cobalt individuels sur le Si(100) dont les propriétés électroniques ont été étudiées à basse température (9 K). Ceci nous a permis d’identifier deux géométries de plot de CoSi2 de tailles nanométriques dont le caractère métallique est démontré et ayant de faibles barrières de Schottky à l’interface métal/semi-conducteur. Dans un second temps, nous avons examiné les propriétés de molécules de Co-TPP individuelles et de leurs interactions avec les surfaces de Si(100) et de Si(100) hydrogénées. Les topographies STM révèlent différentes conformations d’adsorption ayant des propriétés physico-chimiques particulières telles qu’une fonction bistable intramoléculaire, ainsi que des propriétés électroniques surprenantes permettant de sonder la physisorption totale ou partielle de l’adsorbat. Un troisième volet de cette thèse adresse la possibilité d’exploiter les propriétés intrinsèques de la surface de Si(100):H afin de créer des ponts moléculaires grâce au couplage successif de liaisons pendantes créées sur la surface du Si(100):H. Les mesures de spectroscopie tunnel effectuées sur ces structures exhibent des états inoccupés caractéristiques du couplage orbitalaire entre les liaisons pendantes dont l’énergie est fonction de l’orientation de la ligne déshydrogénée sur la surface. Finalement, après avoir vérifié que le processus d’hydrogénation ne perturbe pas le caractère métallique des plots de CoSi2, nous avons pu exploiter nos connaissances acquises lors des chapitres précédents. Ceci nous a permis d’étudier, pour la première fois, le contact entre molécules de Co-TPP et plots métalliques. Grâce aux techniques de manipulation latérale, les molécules de Co-TPP ont pu être déplacées et contactées aux plots métalliques. La spectroscopie tunnel effectuée sur différentes molécules montre, d’une part, qu’en fonction de leur orientation par rapport à l’îlot de CoSi2, la structure électronique de chaque molécule est modifiée de manière spécifique. D’autre part, nous avons observé que la position de la mesure des spectres tunnels influe… Advisors/Committee Members: Riedel, Damien (thesis director).

Subjects/Keywords: Electronique moléculaire; Microscope à effet tunnel à basse température; Silicium; Siliciure de cobalt; Structures déshydrogénées; Manipulation de molécule; Contact moléculaire; Molecular electronics; Low temperature scanning tunneling microscopy; Silicon; Cobalt silicide; Dehydrogenated structures; Molecular Manipulation; Molecular contact

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yengui, M. (2014). Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112289

Chicago Manual of Style (16th Edition):

Yengui, Mayssa. “Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 20, 2019. http://www.theses.fr/2014PA112289.

MLA Handbook (7th Edition):

Yengui, Mayssa. “Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits.” 2014. Web. 20 Oct 2019.

Vancouver:

Yengui M. Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2019 Oct 20]. Available from: http://www.theses.fr/2014PA112289.

Council of Science Editors:

Yengui M. Manipulation de molécules organiques sur couches ultra-minces semi-isolantes et plots métalliques pour la fabrication de circuits moléculaires : Manipulation of organic molecules on ultrathin insulating layers and metallic pads for for the fabrication of molecular circuits. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112289


North Carolina State University

3. Tedesco, Joseph Leo. Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy.

Degree: PhD, Physics, 2007, North Carolina State University

Cobalt disilicide (CoSi2) islands have been formed on Si(111) and Si(100) through UHV deposition and annealing. Current-voltage (I-V) and temperature-dependent current-voltage (I-V-T) curves have been measured on the islands using conducting atomic force microscopy (c-AFM) with a doped diamond like carbon cantilever. Thermionic emission theory has been applied to the curves and the Schottky barrier heights, ΦB, and ideality factors, n, for each island have been calculated. Barrier heights and ideality factors are evaluated as functions of temperature, island area, and each other. While all islands were prepared in UHV conditions, one set was removed from UHV and measurements were performed in ambient conditions while the other set remained in UHV. The islands measured in ambient conditions were known as "air-exposed samples" due to the fact that the surface was assumed to be passivated upon exposure to atmospheric conditions. The islands measured in UHV were known as "clean samples" because the surface was not passivated. Air-exposed samples were CoSi2 islands on Si(111) and exhibited a negative linear correlation between the barrier height and the ideality factor. Measured values of ΦB on the air-exposed samples approached reported bulk values. Measurements from CoSi2 islands on clean Si(111) and Si(100) revealed no correlation between ΦB and n. Furthermore, it was observed that the measured barrier heights of CoSi2 islands on clean Si surfaces are ˜0.2 — 0.3 eV less than the barrier heights measured from CoSi2 islands on air-exposed surfaces. This negative shift in the clean surface barrier heights was attributed to Fermi level pinning by the non-passivated silicon surface states. Additionally, a slight trend toward lower barrier height as a function of decreasing island area was detected in all samples. This trend is attributed to increased hole injection and generation-recombination in the smaller islands, but it may also be due to effects caused by increased spreading resistance as the island size decreases. Non-linearity in activation energy plots, as well as correlations between decreasing barrier height and decreasing island area-to-island periphery ratio, are attributed to generation-recombination. These measurements indicate that the Schottky barrier height decreases and ideality factor increases with decreasing temperature, even if there is no direct linear correlation between ΦB and n. These temperature-dependent relationships are attributed primarily to hole injection and generation-recombination, with barrier height inhomogeneity as a minor effect. Titanium silicide (TiSi2) islands have been formed by UHV deposition of titanium on atomically flat Si(100) and Si(111). Scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and a variant of current imaging tunneling spectroscopy (CITS) have been used to characterize single electron tunneling (SET) through the islands. SET is observed to occur in the islands and is evaluated based on the predictions… Advisors/Committee Members: Carlton M. Osburn, Committee Member (advisor), Thomas P. Pearl, Committee Member (advisor), Robert J. Nemanich, Committee Chair (advisor), J.E. (Jack) Rowe, Committee Member (advisor).

Subjects/Keywords: CoSi2; titanium silicide; TiSi2; transition metal; silicide; scanning probe microscopy; Fermi level pinning; cobalt silicide; Si(100); Si(111); silicon; titanium; cobalt; electrical characterization; c-AFM; conducting atomic force microscopy; AFM; atomic force microscopy; STM; scanning tunneling microscopy; variable temperature; Schottky barrier; Coulomb blockade; I-V; variable temperature; Coulomb staircase; I-V-T; barrier lowering; single electron tunneling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tedesco, J. L. (2007). Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4855

Chicago Manual of Style (16th Edition):

Tedesco, Joseph Leo. “Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy.” 2007. Doctoral Dissertation, North Carolina State University. Accessed October 20, 2019. http://www.lib.ncsu.edu/resolver/1840.16/4855.

MLA Handbook (7th Edition):

Tedesco, Joseph Leo. “Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy.” 2007. Web. 20 Oct 2019.

Vancouver:

Tedesco JL. Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy. [Internet] [Doctoral dissertation]. North Carolina State University; 2007. [cited 2019 Oct 20]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4855.

Council of Science Editors:

Tedesco JL. Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy. [Doctoral Dissertation]. North Carolina State University; 2007. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4855

.