Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(bounded geometry). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Tennessee – Knoxville

1. Jensen, Ryan James. Localization of Large Scale Structures.

Degree: 2017, University of Tennessee – Knoxville

 We begin by giving the definition of coarse structures by John Roe, but quickly move to the equivalent concept of large scale geometry given by… (more)

Subjects/Keywords: asymptotic dimension; large scale geometry; localization; bounded geometry; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jensen, R. J. (2017). Localization of Large Scale Structures. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/4628

Chicago Manual of Style (16th Edition):

Jensen, Ryan James. “Localization of Large Scale Structures.” 2017. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed October 15, 2019. https://trace.tennessee.edu/utk_graddiss/4628.

MLA Handbook (7th Edition):

Jensen, Ryan James. “Localization of Large Scale Structures.” 2017. Web. 15 Oct 2019.

Vancouver:

Jensen RJ. Localization of Large Scale Structures. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2017. [cited 2019 Oct 15]. Available from: https://trace.tennessee.edu/utk_graddiss/4628.

Council of Science Editors:

Jensen RJ. Localization of Large Scale Structures. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2017. Available from: https://trace.tennessee.edu/utk_graddiss/4628


University of Tennessee – Knoxville

2. Bunn, Jared R. Bounded Geometry and Property A for Nonmetrizable Coarse Spaces.

Degree: 2011, University of Tennessee – Knoxville

 We begin by recalling the notion of a coarse space as defined by John Roe. We show that metrizability of coarse spaces is a coarse… (more)

Subjects/Keywords: coarse spaces; bounded geometry; Property A; metrizability; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bunn, J. R. (2011). Bounded Geometry and Property A for Nonmetrizable Coarse Spaces. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/953

Chicago Manual of Style (16th Edition):

Bunn, Jared R. “Bounded Geometry and Property A for Nonmetrizable Coarse Spaces.” 2011. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed October 15, 2019. https://trace.tennessee.edu/utk_graddiss/953.

MLA Handbook (7th Edition):

Bunn, Jared R. “Bounded Geometry and Property A for Nonmetrizable Coarse Spaces.” 2011. Web. 15 Oct 2019.

Vancouver:

Bunn JR. Bounded Geometry and Property A for Nonmetrizable Coarse Spaces. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2011. [cited 2019 Oct 15]. Available from: https://trace.tennessee.edu/utk_graddiss/953.

Council of Science Editors:

Bunn JR. Bounded Geometry and Property A for Nonmetrizable Coarse Spaces. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2011. Available from: https://trace.tennessee.edu/utk_graddiss/953

3. Eldering, J. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry.

Degree: 2012, University Utrecht

 We prove a persistence result for noncompact normally hyperbolic invariant manifolds (NHIMs) in the setting of Riemannian manifolds of bounded geometry. This generalizes classical results… (more)

Subjects/Keywords: normally hyperbolic invariant manifolds; dynamical systems; bounded geometry; persistence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eldering, J. (2012). Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/253594 ; URN:NBN:NL:UI:10-1874-253594 ; urn:isbn:978-90-393-5815-3 ; URN:NBN:NL:UI:10-1874-253594 ; http://dspace.library.uu.nl/handle/1874/253594

Chicago Manual of Style (16th Edition):

Eldering, J. “Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry.” 2012. Doctoral Dissertation, University Utrecht. Accessed October 15, 2019. http://dspace.library.uu.nl/handle/1874/253594 ; URN:NBN:NL:UI:10-1874-253594 ; urn:isbn:978-90-393-5815-3 ; URN:NBN:NL:UI:10-1874-253594 ; http://dspace.library.uu.nl/handle/1874/253594.

MLA Handbook (7th Edition):

Eldering, J. “Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry.” 2012. Web. 15 Oct 2019.

Vancouver:

Eldering J. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry. [Internet] [Doctoral dissertation]. University Utrecht; 2012. [cited 2019 Oct 15]. Available from: http://dspace.library.uu.nl/handle/1874/253594 ; URN:NBN:NL:UI:10-1874-253594 ; urn:isbn:978-90-393-5815-3 ; URN:NBN:NL:UI:10-1874-253594 ; http://dspace.library.uu.nl/handle/1874/253594.

Council of Science Editors:

Eldering J. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry. [Doctoral Dissertation]. University Utrecht; 2012. Available from: http://dspace.library.uu.nl/handle/1874/253594 ; URN:NBN:NL:UI:10-1874-253594 ; urn:isbn:978-90-393-5815-3 ; URN:NBN:NL:UI:10-1874-253594 ; http://dspace.library.uu.nl/handle/1874/253594


University of Western Ontario

4. Alluhaibi, Nadia. On vector-valued automorphic forms on bounded symmetric domains.

Degree: 2017, University of Western Ontario

 The objective of the study is to investigate the behaviour of the inner products of vector-valued Poincare series, for large weight, associated to submanifolds of… (more)

Subjects/Keywords: automorphic forms; asymptotics; poincare series; bounded domains; modular forms; bergman kernel; hyperbolic space; Algebraic Geometry; Analysis; Geometry and Topology; Number Theory; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alluhaibi, N. (2017). On vector-valued automorphic forms on bounded symmetric domains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/4498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Thesis, University of Western Ontario. Accessed October 15, 2019. https://ir.lib.uwo.ca/etd/4498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alluhaibi, Nadia. “On vector-valued automorphic forms on bounded symmetric domains.” 2017. Web. 15 Oct 2019.

Vancouver:

Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2019 Oct 15]. Available from: https://ir.lib.uwo.ca/etd/4498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alluhaibi N. On vector-valued automorphic forms on bounded symmetric domains. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/4498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


EPFL

5. Ducret, Stephen. Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry.

Degree: 2009, EPFL

 The Lq,p-cohomology of a Riemannian manifold (M, g) is defined to be the quotient of closed Lp-forms, modulo the exact forms which are derivatives of… (more)

Subjects/Keywords: Lq,p-cohomology; bounded geometry; quasi-isometry invariance; de Rham theorem; coarse cohomology; cohomologie Lq,p; géométrie bornée; invariance sous quasi-isométries; théorème de de Rham; cohomologie grossière

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ducret, S. (2009). Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/141952

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ducret, Stephen. “Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry.” 2009. Thesis, EPFL. Accessed October 15, 2019. http://infoscience.epfl.ch/record/141952.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ducret, Stephen. “Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry.” 2009. Web. 15 Oct 2019.

Vancouver:

Ducret S. Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry. [Internet] [Thesis]. EPFL; 2009. [cited 2019 Oct 15]. Available from: http://infoscience.epfl.ch/record/141952.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ducret S. Lq,p-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry. [Thesis]. EPFL; 2009. Available from: http://infoscience.epfl.ch/record/141952

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Hochard, Raphaël. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

 Le flot de Ricci est une équation aux dérivées partielles qui régit l’évolution d’une métrique riemannienne dépendant d’un paramètre de temps sur une variété différentielle.… (more)

Subjects/Keywords: Flot de Ricci; Geometrie Riemannienne; Courbure de Ricci minorée; Espace métriques singuliers; Analyse géométrique; Ricci Flow; Riemannian geometry; Ricci curvature bounded from below; Ricci limit spaces; Geometric analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hochard, R. (2019). Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0006

Chicago Manual of Style (16th Edition):

Hochard, Raphaël. “Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.” 2019. Doctoral Dissertation, Bordeaux. Accessed October 15, 2019. http://www.theses.fr/2019BORD0006.

MLA Handbook (7th Edition):

Hochard, Raphaël. “Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.” 2019. Web. 15 Oct 2019.

Vancouver:

Hochard R. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2019 Oct 15]. Available from: http://www.theses.fr/2019BORD0006.

Council of Science Editors:

Hochard R. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0006


EPFL

7. Genton, Luc. Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces.

Degree: 2014, EPFL

Subjects/Keywords: Alexander-Spanier cohomology; Lπ cohomology; Vietoris-Rips complex; quasi-isometry invariance; metric space; bounded geometry; double-complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Genton, L. (2014). Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/201809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Genton, Luc. “Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces.” 2014. Thesis, EPFL. Accessed October 15, 2019. http://infoscience.epfl.ch/record/201809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Genton, Luc. “Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces.” 2014. Web. 15 Oct 2019.

Vancouver:

Genton L. Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces. [Internet] [Thesis]. EPFL; 2014. [cited 2019 Oct 15]. Available from: http://infoscience.epfl.ch/record/201809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Genton L. Scaled Alexander-Spanier Cohomology and Lqp Cohomology for Metric Spaces. [Thesis]. EPFL; 2014. Available from: http://infoscience.epfl.ch/record/201809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

8. Berger, Franz. Topics in the spectral theory of the d-bar-E-Neumann problem.

Degree: 2018, University of Vienna

Diese Dissertation beschäftigt sich mit der Spektraltheorie des komplexen Laplaceoperators mit d-quer-Neumann Randbedingungen, aufgefasst als selbstadjungierter Operator wirkend auf dem Raum der quadratintegrablen Differentialformen einer… (more)

Subjects/Keywords: 31.43 Funktionen mit mehreren komplexen Variablen; 31.45 Partielle Differentialgleichungen; 31.55 Globale Analysis; d-quer-Neumann Problem / Spektraltheorie / komplexe Analysis mehrerer Veränderlichen / elliptische Differentialoperatoren / Mannigfaltigkeiten mit beschränkter Geometrie; d-bar-Neumann problem / spectral theory / several complex variables / elliptic differential operators / manifolds of bounded geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Berger, F. (2018). Topics in the spectral theory of the d-bar-E-Neumann problem. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/51651/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Berger, Franz. “Topics in the spectral theory of the d-bar-E-Neumann problem.” 2018. Thesis, University of Vienna. Accessed October 15, 2019. http://othes.univie.ac.at/51651/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Berger, Franz. “Topics in the spectral theory of the d-bar-E-Neumann problem.” 2018. Web. 15 Oct 2019.

Vancouver:

Berger F. Topics in the spectral theory of the d-bar-E-Neumann problem. [Internet] [Thesis]. University of Vienna; 2018. [cited 2019 Oct 15]. Available from: http://othes.univie.ac.at/51651/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Berger F. Topics in the spectral theory of the d-bar-E-Neumann problem. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/51651/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.