Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(automorphic form). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Minnesota

1. Logan, Kimberly. Differential equations in automorphic forms and an application to particle physics.

Degree: PhD, Mathematics, 2019, University of Minnesota

 Physicists such as Green, Vanhove, et al show that differential equations involving automorphic forms govern the behavior of gravitons. One particular point of interest is… (more)

Subjects/Keywords: automorphic form; graviton; L-function; scattering amplitude

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Logan, K. (2019). Differential equations in automorphic forms and an application to particle physics. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/206231

Chicago Manual of Style (16th Edition):

Logan, Kimberly. “Differential equations in automorphic forms and an application to particle physics.” 2019. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://hdl.handle.net/11299/206231.

MLA Handbook (7th Edition):

Logan, Kimberly. “Differential equations in automorphic forms and an application to particle physics.” 2019. Web. 07 Mar 2021.

Vancouver:

Logan K. Differential equations in automorphic forms and an application to particle physics. [Internet] [Doctoral dissertation]. University of Minnesota; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11299/206231.

Council of Science Editors:

Logan K. Differential equations in automorphic forms and an application to particle physics. [Doctoral Dissertation]. University of Minnesota; 2019. Available from: http://hdl.handle.net/11299/206231


Penn State University

2. Flynn, Ryan Thomas. Quaternion algebras and elliptic curves over function fields of finite characteristic.

Degree: 2013, Penn State University

 We investigate a certain relationship between elliptic curves and function field analogues of Shimura curves. More precisely, we explicitly realize a certain class of elliptic… (more)

Subjects/Keywords: elliptic curve; shimura curve; quaternion algebra; function field; number theory; uniformization; automorphic form

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Flynn, R. T. (2013). Quaternion algebras and elliptic curves over function fields of finite characteristic. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/18938

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Flynn, Ryan Thomas. “Quaternion algebras and elliptic curves over function fields of finite characteristic.” 2013. Thesis, Penn State University. Accessed March 07, 2021. https://submit-etda.libraries.psu.edu/catalog/18938.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Flynn, Ryan Thomas. “Quaternion algebras and elliptic curves over function fields of finite characteristic.” 2013. Web. 07 Mar 2021.

Vancouver:

Flynn RT. Quaternion algebras and elliptic curves over function fields of finite characteristic. [Internet] [Thesis]. Penn State University; 2013. [cited 2021 Mar 07]. Available from: https://submit-etda.libraries.psu.edu/catalog/18938.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Flynn RT. Quaternion algebras and elliptic curves over function fields of finite characteristic. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/18938

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University / 京都大学

3. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.

Degree: 博士(理学), 2016, Kyoto University / 京都大学

新制・課程博士

甲第19548号

理博第4208号

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed March 07, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 07 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University

4. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .

Degree: 2016, Kyoto University

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed March 07, 2021. http://hdl.handle.net/2433/215374.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 07 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. LU HENGFEI. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.

Degree: 2017, National University of Singapore

Subjects/Keywords: periods; theta lift; automorphic form; p-adic group; inner form; Prasad's conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

HENGFEI, L. (2017). GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/135863

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

HENGFEI, LU. “GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.” 2017. Thesis, National University of Singapore. Accessed March 07, 2021. http://scholarbank.nus.edu.sg/handle/10635/135863.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

HENGFEI, LU. “GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.” 2017. Web. 07 Mar 2021.

Vancouver:

HENGFEI L. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. [Internet] [Thesis]. National University of Singapore; 2017. [cited 2021 Mar 07]. Available from: http://scholarbank.nus.edu.sg/handle/10635/135863.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

HENGFEI L. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. [Thesis]. National University of Singapore; 2017. Available from: http://scholarbank.nus.edu.sg/handle/10635/135863

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.