Advanced search options
You searched for subject:(automorphic form)
.
Showing records 1 – 5 of
5 total matches.
▼ Search Limiters
University of Minnesota
1. Logan, Kimberly. Differential equations in automorphic forms and an application to particle physics.
Degree: PhD, Mathematics, 2019, University of Minnesota
URL: http://hdl.handle.net/11299/206231
Subjects/Keywords: automorphic form; graviton; L-function; scattering amplitude
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Logan, K. (2019). Differential equations in automorphic forms and an application to particle physics. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/206231
Chicago Manual of Style (16th Edition):
Logan, Kimberly. “Differential equations in automorphic forms and an application to particle physics.” 2019. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://hdl.handle.net/11299/206231.
MLA Handbook (7th Edition):
Logan, Kimberly. “Differential equations in automorphic forms and an application to particle physics.” 2019. Web. 07 Mar 2021.
Vancouver:
Logan K. Differential equations in automorphic forms and an application to particle physics. [Internet] [Doctoral dissertation]. University of Minnesota; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11299/206231.
Council of Science Editors:
Logan K. Differential equations in automorphic forms and an application to particle physics. [Doctoral Dissertation]. University of Minnesota; 2019. Available from: http://hdl.handle.net/11299/206231
Penn State University
2. Flynn, Ryan Thomas. Quaternion algebras and elliptic curves over function fields of finite characteristic.
Degree: 2013, Penn State University
URL: https://submit-etda.libraries.psu.edu/catalog/18938
Subjects/Keywords: elliptic curve; shimura curve; quaternion algebra; function field; number theory; uniformization; automorphic form
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Flynn, R. T. (2013). Quaternion algebras and elliptic curves over function fields of finite characteristic. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/18938
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Flynn, Ryan Thomas. “Quaternion algebras and elliptic curves over function fields of finite characteristic.” 2013. Thesis, Penn State University. Accessed March 07, 2021. https://submit-etda.libraries.psu.edu/catalog/18938.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Flynn, Ryan Thomas. “Quaternion algebras and elliptic curves over function fields of finite characteristic.” 2013. Web. 07 Mar 2021.
Vancouver:
Flynn RT. Quaternion algebras and elliptic curves over function fields of finite characteristic. [Internet] [Thesis]. Penn State University; 2013. [cited 2021 Mar 07]. Available from: https://submit-etda.libraries.psu.edu/catalog/18938.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Flynn RT. Quaternion algebras and elliptic curves over function fields of finite characteristic. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/18938
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Kyoto University / 京都大学
3. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.
Degree: 博士(理学), 2016, Kyoto University / 京都大学
URL: http://hdl.handle.net/2433/215374
;
http://dx.doi.org/10.14989/doctor.k19548
新制・課程博士
甲第19548号
理博第4208号
Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed March 07, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 07 Mar 2021.
Vancouver:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Kyoto University
4. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .
Degree: 2016, Kyoto University
URL: http://hdl.handle.net/2433/215374
Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed March 07, 2021. http://hdl.handle.net/2433/215374.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 07 Mar 2021.
Vancouver:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
5. LU HENGFEI. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.
Degree: 2017, National University of Singapore
URL: http://scholarbank.nus.edu.sg/handle/10635/135863
Subjects/Keywords: periods; theta lift; automorphic form; p-adic group; inner form; Prasad's conjecture
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
HENGFEI, L. (2017). GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/135863
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
HENGFEI, LU. “GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.” 2017. Thesis, National University of Singapore. Accessed March 07, 2021. http://scholarbank.nus.edu.sg/handle/10635/135863.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
HENGFEI, LU. “GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION.” 2017. Web. 07 Mar 2021.
Vancouver:
HENGFEI L. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. [Internet] [Thesis]. National University of Singapore; 2017. [cited 2021 Mar 07]. Available from: http://scholarbank.nus.edu.sg/handle/10635/135863.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
HENGFEI L. GSP(4)-PERIOD PROBLEMS OVER A QUADRATIC FIELD EXTENSION. [Thesis]. National University of Singapore; 2017. Available from: http://scholarbank.nus.edu.sg/handle/10635/135863
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation