Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(affine lie algebras)`

.
Showing records 1 – 9 of
9 total matches.

▼ Search Limiters

1.
Muthiah, Dinakar.
Double MV Cycles, *Affine* PBW Bases, and Crystal
Combinatorics.

Degree: PhD, Mathematics, 2013, Brown University

URL: https://repository.library.brown.edu/studio/item/bdr:320617/

► The theory of Mirkovic-Vilonen (MV) cycles and polytopes associated to a complex reductive group G has proven to be a rich source of structures related…
(more)

Subjects/Keywords: affine Lie algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Muthiah, D. (2013). Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:320617/

Chicago Manual of Style (16^{th} Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Doctoral Dissertation, Brown University. Accessed September 21, 2020. https://repository.library.brown.edu/studio/item/bdr:320617/.

MLA Handbook (7^{th} Edition):

Muthiah, Dinakar. “Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics.” 2013. Web. 21 Sep 2020.

Vancouver:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Internet] [Doctoral dissertation]. Brown University; 2013. [cited 2020 Sep 21]. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/.

Council of Science Editors:

Muthiah D. Double MV Cycles, Affine PBW Bases, and Crystal Combinatorics. [Doctoral Dissertation]. Brown University; 2013. Available from: https://repository.library.brown.edu/studio/item/bdr:320617/

Rutgers University

2. Nandi, Debajyoti, 1980-. Partition identities arising from the standard A(2)2-modules of level 4.

Degree: PhD, Mathematics, 2014, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

►

In this dissertation, we propose a set of new partition identities, arising from a twisted vertex operator construction of the level 4 standard modules for… (more)

Subjects/Keywords: Affine algebraic groups; Lie algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nandi, Debajyoti, 1. (2014). Partition identities arising from the standard A(2)2-modules of level 4. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

Chicago Manual of Style (16^{th} Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 21, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

MLA Handbook (7^{th} Edition):

Nandi, Debajyoti, 1980-. “Partition identities arising from the standard A(2)2-modules of level 4.” 2014. Web. 21 Sep 2020.

Vancouver:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 21]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/.

Council of Science Editors:

Nandi, Debajyoti 1. Partition identities arising from the standard A(2)2-modules of level 4. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45379/

3.
Shi, Song.
Imaginary Whittaker Modules For Extended *Affine* *Lie* * Algebras*.

Degree: PhD, Mathematics & Statistics, 2016, York University

URL: http://hdl.handle.net/10315/32319

► We classify irreducible Whittaker modules for generalized Heisenberg *Lie* algebra t and irreducible Whittaker modules for *Lie* algebra t obtained by adjoining m degree derivations…
(more)

Subjects/Keywords: Mathematics; Extended affine Lie algebras; Imaginary Whittaker modules; Generalized Heisenberg Lie algebra; Affine Lie algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shi, S. (2016). Imaginary Whittaker Modules For Extended Affine Lie Algebras. (Doctoral Dissertation). York University. Retrieved from http://hdl.handle.net/10315/32319

Chicago Manual of Style (16^{th} Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Doctoral Dissertation, York University. Accessed September 21, 2020. http://hdl.handle.net/10315/32319.

MLA Handbook (7^{th} Edition):

Shi, Song. “Imaginary Whittaker Modules For Extended Affine Lie Algebras.” 2016. Web. 21 Sep 2020.

Vancouver:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Internet] [Doctoral dissertation]. York University; 2016. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10315/32319.

Council of Science Editors:

Shi S. Imaginary Whittaker Modules For Extended Affine Lie Algebras. [Doctoral Dissertation]. York University; 2016. Available from: http://hdl.handle.net/10315/32319

University of Aberdeen

4.
Nunes Castanheira da Costa, Jose Manuel.
* Affine* and curvature collineations in space-time.

Degree: PhD, 1989, University of Aberdeen

URL: http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476

► The purpose of this thesis is the study of the *Lie* *algebras* of *affine* vector fields and curvature collineations of space-time, the aim being, in…
(more)

Subjects/Keywords: 510; Affine vector fields][Lie algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nunes Castanheira da Costa, J. M. (1989). Affine and curvature collineations in space-time. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476

Chicago Manual of Style (16^{th} Edition):

Nunes Castanheira da Costa, Jose Manuel. “Affine and curvature collineations in space-time.” 1989. Doctoral Dissertation, University of Aberdeen. Accessed September 21, 2020. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476.

MLA Handbook (7^{th} Edition):

Nunes Castanheira da Costa, Jose Manuel. “Affine and curvature collineations in space-time.” 1989. Web. 21 Sep 2020.

Vancouver:

Nunes Castanheira da Costa JM. Affine and curvature collineations in space-time. [Internet] [Doctoral dissertation]. University of Aberdeen; 1989. [cited 2020 Sep 21]. Available from: http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476.

Council of Science Editors:

Nunes Castanheira da Costa JM. Affine and curvature collineations in space-time. [Doctoral Dissertation]. University of Aberdeen; 1989. Available from: http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602256 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254476

5.
Barucchieri, Bianca.
* Affine* Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

URL: http://www.theses.fr/2019BORD0153

►

Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte… (more)

Subjects/Keywords: Variétés affines; Groupes cristallographiques; Variétés Hermite-Lorentz; Algèbres de Lie nilpotentes; Affine manifolds; Crystallographic groups; Hermite-Lorentz manifolds; Nilpotent Lie algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Barucchieri, B. (2019). Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0153

Chicago Manual of Style (16^{th} Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Doctoral Dissertation, Bordeaux. Accessed September 21, 2020. http://www.theses.fr/2019BORD0153.

MLA Handbook (7^{th} Edition):

Barucchieri, Bianca. “Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz.” 2019. Web. 21 Sep 2020.

Vancouver:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Sep 21]. Available from: http://www.theses.fr/2019BORD0153.

Council of Science Editors:

Barucchieri B. Affine Hermite-Lorentz manifolds : Variétés affines Hermite-Lorentz. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0153

University of Saskatchewan

6.
Azam, Saeid.
Extended *affine* *lie* *algebras* and extended *affine* weyl groups.

Degree: 1997, University of Saskatchewan

URL: http://hdl.handle.net/10388/etd-10212004-001324

► This thesis is about extended *affine* *Lie* *algebras* and extended *affine* Weyl groups. In Chapter I, we provide the basic knowledge necessary for the study…
(more)

Subjects/Keywords: mathematics; Lie algebra; extended affine Lie algebras; extended affine Weyl groups; automorphism

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Azam, S. (1997). Extended affine lie algebras and extended affine weyl groups. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/etd-10212004-001324

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Thesis, University of Saskatchewan. Accessed September 21, 2020. http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Azam, Saeid. “Extended affine lie algebras and extended affine weyl groups.” 1997. Web. 21 Sep 2020.

Vancouver:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Internet] [Thesis]. University of Saskatchewan; 1997. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10388/etd-10212004-001324.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Azam S. Extended affine lie algebras and extended affine weyl groups. [Thesis]. University of Saskatchewan; 1997. Available from: http://hdl.handle.net/10388/etd-10212004-001324

Not specified: Masters Thesis or Doctoral Dissertation

University of Southern California

7. Warner, Harry Jared, IV. Springer isomorphisms and the variety of elementary subalgebras.

Degree: PhD, Mathematics, 2015, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023

► Over a field of large enough characteristic, we use the canonical Springer isomorphism between the unipotent variety of a connected, reductive group and the nilpotent…
(more)

Subjects/Keywords: affine group schemes; representation theory; support varieties; Springer isomorphism; algebraic groups; elementary subalgebras; restricted Lie algebras; elementary Abelian subgroups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Warner, Harry Jared, I. (2015). Springer isomorphisms and the variety of elementary subalgebras. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023

Chicago Manual of Style (16^{th} Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Doctoral Dissertation, University of Southern California. Accessed September 21, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

MLA Handbook (7^{th} Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Web. 21 Sep 2020.

Vancouver:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Internet] [Doctoral dissertation]. University of Southern California; 2015. [cited 2020 Sep 21]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

Council of Science Editors:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Doctoral Dissertation]. University of Southern California; 2015. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023

8. Du crest de villeneuve, Ann. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.

Degree: Docteur es, Mathématiques, 2018, Angers

URL: http://www.theses.fr/2018ANGE0019

►

Cette thèse traite du calcul et des applications des fonctions tau des hiérarchies de Drinfeld–Sokolov introduites en 1984. Les hiérarchies de Drinfeld–Sokolov sont des suites… (more)

Subjects/Keywords: Algèbres de Lie affines; Hiérarchies de Drinfeld–Sokolov; Fonctions tau; Hiérarchie de double ramification; Integrable systems; Affine Lie algebras; Drinfeld–Sokolov hierarchies; Tau functions; Double ramification hierarchies; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Du crest de villeneuve, A. (2018). Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. (Doctoral Dissertation). Angers. Retrieved from http://www.theses.fr/2018ANGE0019

Chicago Manual of Style (16^{th} Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Doctoral Dissertation, Angers. Accessed September 21, 2020. http://www.theses.fr/2018ANGE0019.

MLA Handbook (7^{th} Edition):

Du crest de villeneuve, Ann. “Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies.” 2018. Web. 21 Sep 2020.

Vancouver:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Internet] [Doctoral dissertation]. Angers; 2018. [cited 2020 Sep 21]. Available from: http://www.theses.fr/2018ANGE0019.

Council of Science Editors:

Du crest de villeneuve A. Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov : Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchies. [Doctoral Dissertation]. Angers; 2018. Available from: http://www.theses.fr/2018ANGE0019

North Carolina State University

9.
Cook, William Jeffrey.
*Affine**Lie* *Algebras*, Vertex Operator *Algebras* and Combinatorial Identities.

Degree: PhD, Mathematics, 2005, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/4972

► *Affine* *Lie* algebra representations have many connections with different areas of mathematics and physics. One such connection in mathematics is with number theory and in…
(more)

Subjects/Keywords: rogers-ramanujan combinartorial identities; affine lie algebras; vertex operator algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cook, W. J. (2005). Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4972

Chicago Manual of Style (16^{th} Edition):

Cook, William Jeffrey. “Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities.” 2005. Doctoral Dissertation, North Carolina State University. Accessed September 21, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4972.

MLA Handbook (7^{th} Edition):

Cook, William Jeffrey. “Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities.” 2005. Web. 21 Sep 2020.

Vancouver:

Cook WJ. Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. [Internet] [Doctoral dissertation]. North Carolina State University; 2005. [cited 2020 Sep 21]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4972.

Council of Science Editors:

Cook WJ. Affine Lie Algebras, Vertex Operator Algebras and Combinatorial Identities. [Doctoral Dissertation]. North Carolina State University; 2005. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4972