Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(a priori estimate). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Univerzitet u Beogradu

1. Hodžić, Sandra G., 1987-. Диференцијске схеме за решавање једначине субдифузије.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Matematika - Numeriqka matematika / Mathematics - Numerical mathematics

У последње време порасло је интересовање за моделирањем физичких и хемијских процеса једначинама у којима се… (more)

Subjects/Keywords: subdiffusion equation; fractional derivative; finite differences; difference scheme; a priori estimate; stability; convergence rate

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hodžić, Sandra G., 1. (2016). Диференцијске схеме за решавање једначине субдифузије. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:12204/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hodžić, Sandra G., 1987-. “Диференцијске схеме за решавање једначине субдифузије.” 2016. Thesis, Univerzitet u Beogradu. Accessed October 28, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:12204/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hodžić, Sandra G., 1987-. “Диференцијске схеме за решавање једначине субдифузије.” 2016. Web. 28 Oct 2020.

Vancouver:

Hodžić, Sandra G. 1. Диференцијске схеме за решавање једначине субдифузије. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Oct 28]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12204/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hodžić, Sandra G. 1. Диференцијске схеме за решавање једначине субдифузије. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12204/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Riaz, Azba. Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate.

Degree: Docteur es, Mathématiques - EM2C, 2016, Cergy-Pontoise

Dans la première partie de cette thèse, nous avons considéré les équations de Maxwell en temps et construit une formulation discontinue de Galerkin (DG). On… (more)

Subjects/Keywords: Equations de Maxwell; Erreur a posteriori; Discontinue Galerkin; Méthode des éléments finis; Erreur a priori; Maxwell's Equations; A posteriori error estimate; Discontinuous Galerkin; Finite element method; A priori error

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Riaz, A. (2016). Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate. (Doctoral Dissertation). Cergy-Pontoise. Retrieved from http://www.theses.fr/2016CERG0790

Chicago Manual of Style (16th Edition):

Riaz, Azba. “Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate.” 2016. Doctoral Dissertation, Cergy-Pontoise. Accessed October 28, 2020. http://www.theses.fr/2016CERG0790.

MLA Handbook (7th Edition):

Riaz, Azba. “Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate.” 2016. Web. 28 Oct 2020.

Vancouver:

Riaz A. Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate. [Internet] [Doctoral dissertation]. Cergy-Pontoise; 2016. [cited 2020 Oct 28]. Available from: http://www.theses.fr/2016CERG0790.

Council of Science Editors:

Riaz A. Une nouvelle formulation Galerkin discontinue pour équations de Maxwell en temps, a priori et a posteriori erreur estimation. : A new Galerkin Discontinuous Formulation for time dependent Maxwell's Equations, a priori and a posteriori Error estimate. [Doctoral Dissertation]. Cergy-Pontoise; 2016. Available from: http://www.theses.fr/2016CERG0790


Univerzitet u Beogradu

3. Milovanović, Zorica D. 1981-. O nekim transmisionim problemima u disjunktnim oblastima.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Matematika - Numerička matematika / Mathematics -Numerical mathematics

U primenama, naročito u inženjerstvu, često se sreću kompozitne ili slojevite strukture, pri čemu se osobine pojedinih… (more)

Subjects/Keywords: transmission problem; disjoint domains; nonlocal integral conjugation conditions; Sobolev spaces; weak solution; a priori estimate; finite diferences; error; convergence.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Milovanović, Z. D. 1. (2016). O nekim transmisionim problemima u disjunktnim oblastima. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11322/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Milovanović, Zorica D 1981-. “O nekim transmisionim problemima u disjunktnim oblastima.” 2016. Thesis, Univerzitet u Beogradu. Accessed October 28, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:11322/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Milovanović, Zorica D 1981-. “O nekim transmisionim problemima u disjunktnim oblastima.” 2016. Web. 28 Oct 2020.

Vancouver:

Milovanović ZD1. O nekim transmisionim problemima u disjunktnim oblastima. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Oct 28]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11322/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Milovanović ZD1. O nekim transmisionim problemima u disjunktnim oblastima. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11322/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Univerzitet u Beogradu

4. Delić, Aleksandra M., 1982-. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Математика - Нумеричка математика / Mathematics - Numerical Mathematics

Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузионе или таласне једначине заменом првог, односно другог извода по временској променљивој изводом разломљеног реда...

Advisors/Committee Members: Jovanović, Boško, 1946-.

Subjects/Keywords: fractional derivatives; subdiusion; superdiusion; interface problems; Sobolev spaces; weak solutions; a priori estimate; nite dierence; rate of convergance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Delić, Aleksandra M., 1. (2016). Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Delić, Aleksandra M., 1982-. “Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.” 2016. Thesis, Univerzitet u Beogradu. Accessed October 28, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Delić, Aleksandra M., 1982-. “Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.” 2016. Web. 28 Oct 2020.

Vancouver:

Delić, Aleksandra M. 1. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Oct 28]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Delić, Aleksandra M. 1. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

5. Arabshahi, Hamidreza. Space-time hybridized discontinuous Galerkin methods for shallow water equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of… (more)

Subjects/Keywords: Shallow water equations; Space-time methods; Hybridized discontinuous Galerkin; Well-balanced formulation; A priori error estimate

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arabshahi, H. (2016). Space-time hybridized discontinuous Galerkin methods for shallow water equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47014

Chicago Manual of Style (16th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed October 28, 2020. http://hdl.handle.net/2152/47014.

MLA Handbook (7th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Web. 28 Oct 2020.

Vancouver:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/2152/47014.

Council of Science Editors:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47014

6. Ayed, Hela. Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions.

Degree: Docteur es, Mathematiques, 2017, Normandie; École nationale d'ingénieurs de Tunis (Tunisie)

Cette thèse est consacrée à l'analyse mathématique et numérique d'un problème d'interaction fluide-structure stationnaire, couplant un fluide newtonien, visqueux et incompressible, modélisé par les équations… (more)

Subjects/Keywords: Problème de Stokes; Conditions Inf-Sup; Fluid-structure interaction; Slip boundary condition of friction type; Stokes equations; A priori error estimate; Mixed finite element; Inf-Sup condition; Schauder fixed point theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ayed, H. (2017). Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions. (Doctoral Dissertation). Normandie; École nationale d'ingénieurs de Tunis (Tunisie). Retrieved from http://www.theses.fr/2017NORMC213

Chicago Manual of Style (16th Edition):

Ayed, Hela. “Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions.” 2017. Doctoral Dissertation, Normandie; École nationale d'ingénieurs de Tunis (Tunisie). Accessed October 28, 2020. http://www.theses.fr/2017NORMC213.

MLA Handbook (7th Edition):

Ayed, Hela. “Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions.” 2017. Web. 28 Oct 2020.

Vancouver:

Ayed H. Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions. [Internet] [Doctoral dissertation]. Normandie; École nationale d'ingénieurs de Tunis (Tunisie); 2017. [cited 2020 Oct 28]. Available from: http://www.theses.fr/2017NORMC213.

Council of Science Editors:

Ayed H. Analyse d'un problème d'interaction fluide-structure avec des conditions aux limites de type frottement à l'interface : Analysis of a fluid-structure interaction problem with friction type boundary conditions. [Doctoral Dissertation]. Normandie; École nationale d'ingénieurs de Tunis (Tunisie); 2017. Available from: http://www.theses.fr/2017NORMC213

7. Meixner, Jessica Delaney. Discontinuous Galerkin methods for spectral wave/circulation modeling.

Degree: PhD, Computational and Applied Mathematics, 2013, University of Texas – Austin

 Waves and circulation processes interact in daily wind and tide driven flows as well as in more extreme events such as hurricanes. Currents and water… (more)

Subjects/Keywords: Discontinuous Galerkin methods; Shallow water equations; Action balance equation; A priori error estimate

…coupled with DG-SWEM (see Chapter 5). • An a priori error estimate has been performed… …Priori Error Estimate 6.1 Governing Equations . . . . . . . . . 6.1.1 Notation and Definitions… …implement, verify and validate a DG spectral wave model, which allows for the implementation of… …5.2.1 Near-Circular Shoal . . . . . . . . . . . . . . . . . . . . 102 102 Chapter 6. An a… …94 96 97 99 Chapter 7. Conclusion 139 Appendix Appendix A. 142 Derivation of Action… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meixner, J. D. (2013). Discontinuous Galerkin methods for spectral wave/circulation modeling. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21413

Chicago Manual of Style (16th Edition):

Meixner, Jessica Delaney. “Discontinuous Galerkin methods for spectral wave/circulation modeling.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed October 28, 2020. http://hdl.handle.net/2152/21413.

MLA Handbook (7th Edition):

Meixner, Jessica Delaney. “Discontinuous Galerkin methods for spectral wave/circulation modeling.” 2013. Web. 28 Oct 2020.

Vancouver:

Meixner JD. Discontinuous Galerkin methods for spectral wave/circulation modeling. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/2152/21413.

Council of Science Editors:

Meixner JD. Discontinuous Galerkin methods for spectral wave/circulation modeling. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21413

.