Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Wasserstein space). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Colorado State University

1. Mirth, Joshua. Vietoris–Rips metric thickenings and Wasserstein spaces.

Degree: PhD, Mathematics, 2020, Colorado State University

 If the vertex set, X, of a simplicial complex, K, is a metric space, then K can be interpreted as a subset of the Wasserstein(more)

Subjects/Keywords: optimal transport; Vietoris-Rips complex; category theory; Wasserstein space; topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mirth, J. (2020). Vietoris–Rips metric thickenings and Wasserstein spaces. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/211767

Chicago Manual of Style (16th Edition):

Mirth, Joshua. “Vietoris–Rips metric thickenings and Wasserstein spaces.” 2020. Doctoral Dissertation, Colorado State University. Accessed February 25, 2021. http://hdl.handle.net/10217/211767.

MLA Handbook (7th Edition):

Mirth, Joshua. “Vietoris–Rips metric thickenings and Wasserstein spaces.” 2020. Web. 25 Feb 2021.

Vancouver:

Mirth J. Vietoris–Rips metric thickenings and Wasserstein spaces. [Internet] [Doctoral dissertation]. Colorado State University; 2020. [cited 2021 Feb 25]. Available from: http://hdl.handle.net/10217/211767.

Council of Science Editors:

Mirth J. Vietoris–Rips metric thickenings and Wasserstein spaces. [Doctoral Dissertation]. Colorado State University; 2020. Available from: http://hdl.handle.net/10217/211767

2. Cazelles, Elsa. Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein.

Degree: Docteur es, Mathématiques appliquées et calcul scientifique, 2018, Bordeaux

Cette thèse se concentre sur l'analyse de données présentées sous forme de mesures de probabilité sur R^d. L'objectif est alors de fournir une meilleure compréhension… (more)

Subjects/Keywords: Espace de Wasserstein; Barycentre; Acp; Transport optimal régularisé; Test d'hypothèse; Analyse statistique; Wasserstein space; Barycenter; Pca; Regularized optimal transport; Hypothesis testing; Statistical analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cazelles, E. (2018). Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2018BORD0125

Chicago Manual of Style (16th Edition):

Cazelles, Elsa. “Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein.” 2018. Doctoral Dissertation, Bordeaux. Accessed February 25, 2021. http://www.theses.fr/2018BORD0125.

MLA Handbook (7th Edition):

Cazelles, Elsa. “Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein.” 2018. Web. 25 Feb 2021.

Vancouver:

Cazelles E. Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein. [Internet] [Doctoral dissertation]. Bordeaux; 2018. [cited 2021 Feb 25]. Available from: http://www.theses.fr/2018BORD0125.

Council of Science Editors:

Cazelles E. Statistical properties of barycenters in the Wasserstein space and fast algorithms for optimal transport of measures : Propriétés statistiques du barycentre dans l’espace de Wasserstein. [Doctoral Dissertation]. Bordeaux; 2018. Available from: http://www.theses.fr/2018BORD0125

3. Bui, Thi Thien Trang. Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy.

Degree: Docteur es, Mathématiques et Applications, 2019, Toulouse, INSA

Dans cette thèse, nous étudions un modèle de régression avec des entrées de type distribution et le problème de test d'hypothèse pour la détection de… (more)

Subjects/Keywords: Régression; Reproduction de l'espace de Hilbert du noyau; Distance de Wasserstein; Émission otoacoustique évoquée transitoire; Taux de séparation; Tests adaptatifs; Méthodes du noyau; Test agrégé; Regression; Reproducing kernel Hilbert space; Wasserstein distance; Transient evoked otoacoustic emission; Separation rates; Adaptive tests; Kernel methods; Aggregated test; 511

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bui, T. T. T. (2019). Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy. (Doctoral Dissertation). Toulouse, INSA. Retrieved from http://www.theses.fr/2019ISAT0021

Chicago Manual of Style (16th Edition):

Bui, Thi Thien Trang. “Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy.” 2019. Doctoral Dissertation, Toulouse, INSA. Accessed February 25, 2021. http://www.theses.fr/2019ISAT0021.

MLA Handbook (7th Edition):

Bui, Thi Thien Trang. “Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy.” 2019. Web. 25 Feb 2021.

Vancouver:

Bui TTT. Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy. [Internet] [Doctoral dissertation]. Toulouse, INSA; 2019. [cited 2021 Feb 25]. Available from: http://www.theses.fr/2019ISAT0021.

Council of Science Editors:

Bui TTT. Modèle de régression pour des données non-Euclidiennes en grande dimension. Application à la classification de taxons en anatomie computationnelle. : Regression model for high-dimensional non-euclidean data. Application to the classification of taxa in the computational anatomy. [Doctoral Dissertation]. Toulouse, INSA; 2019. Available from: http://www.theses.fr/2019ISAT0021

4. Kashlak, Adam B. A concentration inequality based statistical methodology for inference on covariance matrices and operators.

Degree: PhD, 2017, University of Cambridge

 In the modern era of high and infinite dimensional data, classical statistical methodology is often rendered inefficient and ineffective when confronted with such big data… (more)

Subjects/Keywords: Sparsity; Thresholding estimator; Procrustes; Functional Data; Talagrand's Inequality; Log Sobolev Inequality; Sub-Gaussian; Sub-Exponential; Classification; Clustering; Banach Space; Rademacher Symmetrization; Wasserstein Distance; High Dimensional Data

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kashlak, A. B. (2017). A concentration inequality based statistical methodology for inference on covariance matrices and operators. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267833

Chicago Manual of Style (16th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Doctoral Dissertation, University of Cambridge. Accessed February 25, 2021. https://www.repository.cam.ac.uk/handle/1810/267833.

MLA Handbook (7th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Web. 25 Feb 2021.

Vancouver:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Feb 25]. Available from: https://www.repository.cam.ac.uk/handle/1810/267833.

Council of Science Editors:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267833

5. Kim, Hwa Kil. Hamiltonian systems and the calculus of differential forms on the Wasserstein space.

Degree: PhD, Mathematics, 2009, Georgia Tech

 This thesis consists of two parts. In the first part, we study stability properties of Hamiltonian systems on the Wasserstein space. Let H be a… (more)

Subjects/Keywords: Hamiltonian systems; Differential forms; Wasserstein space; Hamiltonian systems; Differential forms

…1.2 Wasserstein space . . . . . . . . . . . . . . . . . . . . . . . . . . . . II… …WASSERSTEIN SPACE 41 3.1 Tangent and Cotangent bundles . . . . . . . . . . . . . . . . . . . . 41… …properties of Hamiltonian systems on the Wasserstein space. Let H be a Hamiltonian satisfying… …forms on the Wasserstein space. Our main result is to prove an analogue of Green’s theorem for… …1-forms and show that every closed 1-form on the Wasserstein space is exact. If the… 

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, H. K. (2009). Hamiltonian systems and the calculus of differential forms on the Wasserstein space. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/29720

Chicago Manual of Style (16th Edition):

Kim, Hwa Kil. “Hamiltonian systems and the calculus of differential forms on the Wasserstein space.” 2009. Doctoral Dissertation, Georgia Tech. Accessed February 25, 2021. http://hdl.handle.net/1853/29720.

MLA Handbook (7th Edition):

Kim, Hwa Kil. “Hamiltonian systems and the calculus of differential forms on the Wasserstein space.” 2009. Web. 25 Feb 2021.

Vancouver:

Kim HK. Hamiltonian systems and the calculus of differential forms on the Wasserstein space. [Internet] [Doctoral dissertation]. Georgia Tech; 2009. [cited 2021 Feb 25]. Available from: http://hdl.handle.net/1853/29720.

Council of Science Editors:

Kim HK. Hamiltonian systems and the calculus of differential forms on the Wasserstein space. [Doctoral Dissertation]. Georgia Tech; 2009. Available from: http://hdl.handle.net/1853/29720

6. Wei, Xiaoli. Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications.

Degree: Docteur es, Mathématiques appliquées, 2018, Sorbonne Paris Cité

Cette thèse étudie le contrôle optimal de la dynamique de type McKean-Vlasov et ses applications en mathématiques financières. La thèse contient deux parties. Dans la… (more)

Subjects/Keywords: Équation de type McKean-Vlasov; EDS de type McKean-Vlasov; Espace de Wasserstein; Problème de Markowitz en temps continu; Incertitude sur les modèles; Drift et corrélation ambiguës; Principe de séparation; Sous-diversification; McKean-Vlasov equation; McKean-Vlasov SDEs; Dynamic programming; Wasserstein space; Bellman equation; Viscosity solution; Continuous-time Markowtiz problem; Model uncertainty; Ambiguous drift and correlation; Separation principle; Under-diversification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wei, X. (2018). Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2018USPCC222

Chicago Manual of Style (16th Edition):

Wei, Xiaoli. “Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications.” 2018. Doctoral Dissertation, Sorbonne Paris Cité. Accessed February 25, 2021. http://www.theses.fr/2018USPCC222.

MLA Handbook (7th Edition):

Wei, Xiaoli. “Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications.” 2018. Web. 25 Feb 2021.

Vancouver:

Wei X. Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2018. [cited 2021 Feb 25]. Available from: http://www.theses.fr/2018USPCC222.

Council of Science Editors:

Wei X. Control of McKean-Vlasov systems and applications : Problèmes de contrôle de type McKean-Vlasov et applications. [Doctoral Dissertation]. Sorbonne Paris Cité; 2018. Available from: http://www.theses.fr/2018USPCC222

7. Sedjro, Marc Mawulom. On the almost axisymmetric flows with forcing terms.

Degree: PhD, Mathematics, 2012, Georgia Tech

 This work is concerned with the Almost Axisymmetric Flows with Forcing Terms which are derived from the inviscid Boussinesq equations. It is our hope that… (more)

Subjects/Keywords: Wasserstein space; Boussinesq; Monge-Ampère equations; Axisymmetric flows; Hamiltonian system; Axial flow; Cyclones

…x28;1.1.2) we obtain (1.0.2). 1.2 Change of variables into the Dual space and… …space we called “the dual space.” As we will soon see, this appropriately chosen change of… …the physical space can be expressed in different variables. Computing the Jacobian of the… …boundary. In the “dual space”, this system of PDEs takes the form     ∂σ + div(Vt [… …Definition 2.1.1 Let µ0 and µ1 be borel measures in Rd . The (p-th) Wasserstein distance… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sedjro, M. M. (2012). On the almost axisymmetric flows with forcing terms. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/44879

Chicago Manual of Style (16th Edition):

Sedjro, Marc Mawulom. “On the almost axisymmetric flows with forcing terms.” 2012. Doctoral Dissertation, Georgia Tech. Accessed February 25, 2021. http://hdl.handle.net/1853/44879.

MLA Handbook (7th Edition):

Sedjro, Marc Mawulom. “On the almost axisymmetric flows with forcing terms.” 2012. Web. 25 Feb 2021.

Vancouver:

Sedjro MM. On the almost axisymmetric flows with forcing terms. [Internet] [Doctoral dissertation]. Georgia Tech; 2012. [cited 2021 Feb 25]. Available from: http://hdl.handle.net/1853/44879.

Council of Science Editors:

Sedjro MM. On the almost axisymmetric flows with forcing terms. [Doctoral Dissertation]. Georgia Tech; 2012. Available from: http://hdl.handle.net/1853/44879

8. Gallouët, Thomas. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.

Degree: Docteur es, Mathématiques, 2012, Lyon, École normale supérieure

Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne,… (more)

Subjects/Keywords: Transport optimal; Régularité; Ma-Trundinger-Wang; MTW; Coût; Variété riemannienne; Convexité; Domaine d'injectivité; Lipschitz; C-convexité; Keller-Segel; Quantification de la masse; Particules; 1D; Explosion; Wasserstein; Flot gradient; Espace métrique; Masse critique; Optimal transport; Regularity; Ma-Trundinger-Wang; MTW; Cost; Riemannian manifold; Convexity; Injectivity domain; Lipschitz continuous; C-convexity; Keller-Segel; Mass quantization; Particles; 1D; Blow-up; Wasserstein; Gradient flow; Metric space; Critical mass

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gallouët, T. (2012). Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2012ENSL0797

Chicago Manual of Style (16th Edition):

Gallouët, Thomas. “Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.” 2012. Doctoral Dissertation, Lyon, École normale supérieure. Accessed February 25, 2021. http://www.theses.fr/2012ENSL0797.

MLA Handbook (7th Edition):

Gallouët, Thomas. “Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.” 2012. Web. 25 Feb 2021.

Vancouver:

Gallouët T. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2012. [cited 2021 Feb 25]. Available from: http://www.theses.fr/2012ENSL0797.

Council of Science Editors:

Gallouët T. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. [Doctoral Dissertation]. Lyon, École normale supérieure; 2012. Available from: http://www.theses.fr/2012ENSL0797


Université du Luxembourg

9. Selinger, Christian. Geometry and Stochastic Calculus on Wasserstein spaces.

Degree: 2010, Université du Luxembourg

The main object of interest in this thesis is P(M) – the space of probability measures on a manifold endowed with the Wasserstein distance: In… (more)

Subjects/Keywords: Optimal transport Histograms; Regularized Laplacian Simplex; Wasserstein space Infinite dimensional diffusion process 8; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Selinger, C. (2010). Geometry and Stochastic Calculus on Wasserstein spaces. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/15561

Chicago Manual of Style (16th Edition):

Selinger, Christian. “Geometry and Stochastic Calculus on Wasserstein spaces.” 2010. Doctoral Dissertation, Université du Luxembourg. Accessed February 25, 2021. http://orbilu.uni.lu/handle/10993/15561.

MLA Handbook (7th Edition):

Selinger, Christian. “Geometry and Stochastic Calculus on Wasserstein spaces.” 2010. Web. 25 Feb 2021.

Vancouver:

Selinger C. Geometry and Stochastic Calculus on Wasserstein spaces. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2010. [cited 2021 Feb 25]. Available from: http://orbilu.uni.lu/handle/10993/15561.

Council of Science Editors:

Selinger C. Geometry and Stochastic Calculus on Wasserstein spaces. [Doctoral Dissertation]. Université du Luxembourg; 2010. Available from: http://orbilu.uni.lu/handle/10993/15561

10. Kashlak, Adam B. A concentration inequality based statistical methodology for inference on covariance matrices and operators.

Degree: PhD, 2017, University of Cambridge

 In the modern era of high and infinite dimensional data, classical statistical methodology is often rendered inefficient and ineffective when confronted with such big data… (more)

Subjects/Keywords: 519.5; Sparsity; Thresholding estimator; Procrustes; Functional Data; Talagrand's Inequality; Log Sobolev Inequality; Sub-Gaussian; Sub-Exponential; Classification; Clustering; Banach Space; Rademacher Symmetrization; Wasserstein Distance; High Dimensional Data

Wasserstein spaces . . . . . . . . . . . . . . . . . 94 4.3.2 Symmetrization result… …space where the data exists. While the property of being dimension free does not guarantee… …skipping such a dimension reduction step and analyzing the data in its original function space… …concentration inequality for general Banach space valued random variables is detailed in Appendix 3.A… …inequality contains a term dependent on the Wasserstein distance W2 , Section 4.4 provides a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kashlak, A. B. (2017). A concentration inequality based statistical methodology for inference on covariance matrices and operators. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.13757 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725565

Chicago Manual of Style (16th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Doctoral Dissertation, University of Cambridge. Accessed February 25, 2021. https://doi.org/10.17863/CAM.13757 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725565.

MLA Handbook (7th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Web. 25 Feb 2021.

Vancouver:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Feb 25]. Available from: https://doi.org/10.17863/CAM.13757 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725565.

Council of Science Editors:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.13757 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725565

.