Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Vlasov equations). Showing records 1 – 21 of 21 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Cesbron, Ludovic. On the derivation of non-local diffusion equations in confined spaces.

Degree: PhD, 2017, University of Cambridge

The subject of the thesis is the derivation of non-local diffusion equations from kinetic models with heavy-tailed equilibrium in velocity. We are particularly interested in confining the kinetic equations and developing methods that allow us, from the confined kinetic models, to derive confined versions of non-local diffusion equations.

Subjects/Keywords: Kinetic theory of gases; Diffusion processes; Diffusion limits; Analysis of PDEs; Vlasov-Fokker-Planck equations; Fractional Laplacian; Vlasov equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cesbron, L. (2017). On the derivation of non-local diffusion equations in confined spaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/270355

Chicago Manual of Style (16th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 04, 2020. https://www.repository.cam.ac.uk/handle/1810/270355.

MLA Handbook (7th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Web. 04 Dec 2020.

Vancouver:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 04]. Available from: https://www.repository.cam.ac.uk/handle/1810/270355.

Council of Science Editors:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/270355


University of Cambridge

2. Cesbron, Ludovic. On the derivation of non-local diffusion equations in confined spaces.

Degree: PhD, 2017, University of Cambridge

The subject of the thesis is the derivation of non-local diffusion equations from kinetic models with heavy-tailed equilibrium in velocity. We are particularly interested in confining the kinetic equations and developing methods that allow us, from the confined kinetic models, to derive confined versions of non-local diffusion equations.

Subjects/Keywords: 515; Kinetic theory of gases; Diffusion processes; Diffusion limits; Analysis of PDEs; Vlasov-Fokker-Planck equations; Fractional Laplacian; Vlasov equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cesbron, L. (2017). On the derivation of non-local diffusion equations in confined spaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418

Chicago Manual of Style (16th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 04, 2020. https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418.

MLA Handbook (7th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Web. 04 Dec 2020.

Vancouver:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 04]. Available from: https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418.

Council of Science Editors:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418


University of Edinburgh

3. Salkeld, William John. McKean-Vlasov equations : a probabilistic and pathwise approach.

Degree: PhD, 2020, University of Edinburgh

 This thesis divides neatly into four collections of results. In the first (Part II), we provide existence and uniqueness results along with several properties for… (more)

Subjects/Keywords: McKean-Vlasov equations; Bismut-Elworthy-Li formula; one-sided Lipschitz condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Salkeld, W. J. (2020). McKean-Vlasov equations : a probabilistic and pathwise approach. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/37109

Chicago Manual of Style (16th Edition):

Salkeld, William John. “McKean-Vlasov equations : a probabilistic and pathwise approach.” 2020. Doctoral Dissertation, University of Edinburgh. Accessed December 04, 2020. http://hdl.handle.net/1842/37109.

MLA Handbook (7th Edition):

Salkeld, William John. “McKean-Vlasov equations : a probabilistic and pathwise approach.” 2020. Web. 04 Dec 2020.

Vancouver:

Salkeld WJ. McKean-Vlasov equations : a probabilistic and pathwise approach. [Internet] [Doctoral dissertation]. University of Edinburgh; 2020. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/1842/37109.

Council of Science Editors:

Salkeld WJ. McKean-Vlasov equations : a probabilistic and pathwise approach. [Doctoral Dissertation]. University of Edinburgh; 2020. Available from: http://hdl.handle.net/1842/37109


University of Edinburgh

4. Salkeld, William John. McKean-Vlasov equations : a probabilistic and pathwise approach.

Degree: PhD, 2020, University of Edinburgh

 This thesis divides neatly into four collections of results. In the first (Part II), we provide existence and uniqueness results along with several properties for… (more)

Subjects/Keywords: McKean-Vlasov equations; Bismut-Elworthy-Li formula; one-sided Lipschitz condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Salkeld, W. J. (2020). McKean-Vlasov equations : a probabilistic and pathwise approach. (Doctoral Dissertation). University of Edinburgh. Retrieved from https://doi.org/10.7488/era/410 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.806138

Chicago Manual of Style (16th Edition):

Salkeld, William John. “McKean-Vlasov equations : a probabilistic and pathwise approach.” 2020. Doctoral Dissertation, University of Edinburgh. Accessed December 04, 2020. https://doi.org/10.7488/era/410 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.806138.

MLA Handbook (7th Edition):

Salkeld, William John. “McKean-Vlasov equations : a probabilistic and pathwise approach.” 2020. Web. 04 Dec 2020.

Vancouver:

Salkeld WJ. McKean-Vlasov equations : a probabilistic and pathwise approach. [Internet] [Doctoral dissertation]. University of Edinburgh; 2020. [cited 2020 Dec 04]. Available from: https://doi.org/10.7488/era/410 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.806138.

Council of Science Editors:

Salkeld WJ. McKean-Vlasov equations : a probabilistic and pathwise approach. [Doctoral Dissertation]. University of Edinburgh; 2020. Available from: https://doi.org/10.7488/era/410 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.806138

5. Fedele, Baptiste. Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma.

Degree: Docteur es, Mathématiques appliquées, 2019, Université Toulouse III – Paul Sabatier

Cette thèse de doctorat a pour thématique la modélisation mathématique et la simulation numérique de plusieurs équations d'évolution anisotropes qui modélisent des phénomènes issus de… (more)

Subjects/Keywords: Vlasov; Schémas préservant l'asymptotique; Equations multi-échelles; Plasmas; Vlasov; Multi-scale equation; Plasma; Asymptotic preserving schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fedele, B. (2019). Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30097

Chicago Manual of Style (16th Edition):

Fedele, Baptiste. “Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed December 04, 2020. http://www.theses.fr/2019TOU30097.

MLA Handbook (7th Edition):

Fedele, Baptiste. “Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma.” 2019. Web. 04 Dec 2020.

Vancouver:

Fedele B. Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2019TOU30097.

Council of Science Editors:

Fedele B. Étude mathématique et numérique d'équations cinétiques et fluides multi-échelles pour la description d'un plasma de fusion : Mathematical and numerical study of kinetic and fluids multi-scales equations for the description of fusion plasma. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30097


University of Cambridge

6. Griffin-Pickering, Megan. Contributions to the derivation and well-posedness theory of kinetic equations.

Degree: PhD, 2020, University of Cambridge

 This thesis is concerned with certain partial differential equations, of kinetic type, that are involved in the modelling of many-particle systems. The Vlasov-Poisson system is… (more)

Subjects/Keywords: Partial differential equations; Kinetic equations; Plasma; Vlasov-Poisson system; Massless electrons regime; Kinetic Euler system; Quasi-neutral limit; Mean field derivation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Griffin-Pickering, M. (2020). Contributions to the derivation and well-posedness theory of kinetic equations. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.49109 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.801774

Chicago Manual of Style (16th Edition):

Griffin-Pickering, Megan. “Contributions to the derivation and well-posedness theory of kinetic equations.” 2020. Doctoral Dissertation, University of Cambridge. Accessed December 04, 2020. https://doi.org/10.17863/CAM.49109 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.801774.

MLA Handbook (7th Edition):

Griffin-Pickering, Megan. “Contributions to the derivation and well-posedness theory of kinetic equations.” 2020. Web. 04 Dec 2020.

Vancouver:

Griffin-Pickering M. Contributions to the derivation and well-posedness theory of kinetic equations. [Internet] [Doctoral dissertation]. University of Cambridge; 2020. [cited 2020 Dec 04]. Available from: https://doi.org/10.17863/CAM.49109 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.801774.

Council of Science Editors:

Griffin-Pickering M. Contributions to the derivation and well-posedness theory of kinetic equations. [Doctoral Dissertation]. University of Cambridge; 2020. Available from: https://doi.org/10.17863/CAM.49109 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.801774


University of Cambridge

7. Griffin-Pickering, Megan. Contributions to the Derivation and Well-posedness Theory of Kinetic Equations.

Degree: PhD, 2020, University of Cambridge

 This thesis is concerned with certain partial differential equations, of kinetic type, that are involved in the modelling of many-particle systems. The Vlasov-Poisson system is… (more)

Subjects/Keywords: Partial differential equations; Kinetic equations; Plasma; Vlasov-Poisson system; Massless electrons regime; Kinetic Euler system; Quasi-neutral limit; Mean field derivation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Griffin-Pickering, M. (2020). Contributions to the Derivation and Well-posedness Theory of Kinetic Equations. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/302035

Chicago Manual of Style (16th Edition):

Griffin-Pickering, Megan. “Contributions to the Derivation and Well-posedness Theory of Kinetic Equations.” 2020. Doctoral Dissertation, University of Cambridge. Accessed December 04, 2020. https://www.repository.cam.ac.uk/handle/1810/302035.

MLA Handbook (7th Edition):

Griffin-Pickering, Megan. “Contributions to the Derivation and Well-posedness Theory of Kinetic Equations.” 2020. Web. 04 Dec 2020.

Vancouver:

Griffin-Pickering M. Contributions to the Derivation and Well-posedness Theory of Kinetic Equations. [Internet] [Doctoral dissertation]. University of Cambridge; 2020. [cited 2020 Dec 04]. Available from: https://www.repository.cam.ac.uk/handle/1810/302035.

Council of Science Editors:

Griffin-Pickering M. Contributions to the Derivation and Well-posedness Theory of Kinetic Equations. [Doctoral Dissertation]. University of Cambridge; 2020. Available from: https://www.repository.cam.ac.uk/handle/1810/302035

8. Garcia Trillos, Camilo Andrés. Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems.

Degree: Docteur es, Mathématiques, 2013, Nice

Cette thèse traite de la solution numérique de deux types de problèmes stochastiques. Premièrement, nous nous intéressons aux EDS fortement oscillantes, c'est-à-dire, les systèmes composés… (more)

Subjects/Keywords: Méthodes numériques; Systèmes multi-échelles; Systèmes fortement oscillants; Équations de McKean Vlasov; EDSPR; Cubature; Recombinaison; Numerical methods; Multi-scale system; Strongly oscillating systems; McKean Vlasov equations; FBSDE; Cubature; Recombination

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia Trillos, C. A. (2013). Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2013NICE4133

Chicago Manual of Style (16th Edition):

Garcia Trillos, Camilo Andrés. “Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems.” 2013. Doctoral Dissertation, Nice. Accessed December 04, 2020. http://www.theses.fr/2013NICE4133.

MLA Handbook (7th Edition):

Garcia Trillos, Camilo Andrés. “Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems.” 2013. Web. 04 Dec 2020.

Vancouver:

Garcia Trillos CA. Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems. [Internet] [Doctoral dissertation]. Nice; 2013. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2013NICE4133.

Council of Science Editors:

Garcia Trillos CA. Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyen : Probabilistic numerical methods : multi-scale and mean-field problems. [Doctoral Dissertation]. Nice; 2013. Available from: http://www.theses.fr/2013NICE4133

9. Bigorgne, Léo. Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system.

Degree: Docteur es, Mathématiques fondamentales, 2019, Université Paris-Saclay (ComUE)

L'objectif de cette thèse est de décrire le comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell. En particulier, on s'attachera à étudier… (more)

Subjects/Keywords: EDP Hyperboliques; Système de Vlasov-Maxwell; Equations non-Linéaires; Equations d'ondes et de transport; Méthodes de champs de vecteurs; Structure isotrope; Hyperbolic PDE; Vlasov-Maxwell system; Non linear equations; Wave and transport equations; Vector field methods; Null structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bigorgne, L. (2019). Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2019SACLS164

Chicago Manual of Style (16th Edition):

Bigorgne, Léo. “Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system.” 2019. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed December 04, 2020. http://www.theses.fr/2019SACLS164.

MLA Handbook (7th Edition):

Bigorgne, Léo. “Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system.” 2019. Web. 04 Dec 2020.

Vancouver:

Bigorgne L. Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2019. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2019SACLS164.

Council of Science Editors:

Bigorgne L. Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2019. Available from: http://www.theses.fr/2019SACLS164

10. Steiner, Christophe. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.

Degree: Docteur es, Mathématiques appliquées, 2014, Université de Strasbourg

Cette thèse propose et analyse des méthodes numériques pour la résolution de l'équation de Vlasov. Cette équation modélise l'évolution d'une espèce de particules chargées sous… (more)

Subjects/Keywords: Equation de Vlasov; Méthodes semi-Lagrangiennes; Equations équivalentes; Superconvergence; GPU; Gyromoyenne; Equation de quasi-neutralité; Modèle gyrocinétique; Vlasov equation; Semi-Lagrangian methods; Equivalent equations; Superconvergence; GPU; Gyrokinetic model; Gyroaverage; Quasi-neutrality equation; 515; 518; 533.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Steiner, C. (2014). Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2014STRAD033

Chicago Manual of Style (16th Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Doctoral Dissertation, Université de Strasbourg. Accessed December 04, 2020. http://www.theses.fr/2014STRAD033.

MLA Handbook (7th Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Web. 04 Dec 2020.

Vancouver:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2014. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2014STRAD033.

Council of Science Editors:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Doctoral Dissertation]. Université de Strasbourg; 2014. Available from: http://www.theses.fr/2014STRAD033

11. Caldini-Queiros, Céline. Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models.

Degree: Docteur es, Mathématiques et applications, 2013, Besançon

Cette thèse porte sur les équations gyro-cinétiques et traite un développement rigoureux deslimites de l'équation de Vlasov avec différents opérateurs de collision dans un champ… (more)

Subjects/Keywords: Equations gyro-cinétiques; Equation de Vlasov; Rayon de Larmor fini; Opérateur de Fokker-Planck-Landau; Collisions; Modèles micro-macro; Schéma asymptotiquement préservatif; Gyro-kinetic equations; Vlasov equations; Finite Larmor radius; Guiding-center model; Fokker-Planck-Landau equations; Collisions; Asymptotic preserving schemes; Micro-macro decomposition; 35Q75; 78A35; 82D10; 35Q92; 35Q30; 82D15; 78A70

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Caldini-Queiros, C. (2013). Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models. (Doctoral Dissertation). Besançon. Retrieved from http://www.theses.fr/2013BESA2013

Chicago Manual of Style (16th Edition):

Caldini-Queiros, Céline. “Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models.” 2013. Doctoral Dissertation, Besançon. Accessed December 04, 2020. http://www.theses.fr/2013BESA2013.

MLA Handbook (7th Edition):

Caldini-Queiros, Céline. “Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models.” 2013. Web. 04 Dec 2020.

Vancouver:

Caldini-Queiros C. Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models. [Internet] [Doctoral dissertation]. Besançon; 2013. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2013BESA2013.

Council of Science Editors:

Caldini-Queiros C. Analyse mathématique et numérique de modèles gyrocinétiques : Mathematical and numerical analysis of gyro-kinetic models. [Doctoral Dissertation]. Besançon; 2013. Available from: http://www.theses.fr/2013BESA2013

12. Horsin, Romain. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.

Degree: Docteur es, Mathématiques et Applications, 2017, Rennes 1

Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène… (more)

Subjects/Keywords: Équations de type Vlasov; Équations d’Euler; Équations de transport; Amortissement Landau; État stationnaire; Méthodes de splitting; Méthodes semi-Lagrangiennes; Intégrateur symplectique; Intégrateur de Crouch-Grossman; Analyse d’erreur rétrograde; Systèmes hamiltoniens; Coordonnées action-angle; Vlasov equations; Euler equations; Transport equations; Landau damping; Stationary state; Splitting methods; Semi-Lagrangian methods; Symplectic integrator; Crouch-Grossman integrator; Backward error analysis; Hamiltonian systems; Angle-action variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Horsin, R. (2017). Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2017REN1S062

Chicago Manual of Style (16th Edition):

Horsin, Romain. “Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.” 2017. Doctoral Dissertation, Rennes 1. Accessed December 04, 2020. http://www.theses.fr/2017REN1S062.

MLA Handbook (7th Edition):

Horsin, Romain. “Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.” 2017. Web. 04 Dec 2020.

Vancouver:

Horsin R. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. [Internet] [Doctoral dissertation]. Rennes 1; 2017. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2017REN1S062.

Council of Science Editors:

Horsin R. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. [Doctoral Dissertation]. Rennes 1; 2017. Available from: http://www.theses.fr/2017REN1S062

13. Herda, Maxime. Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles.

Degree: Docteur es, Mathématiques, 2017, Lyon

Cette thèse est consacrée à l'étude mathématique de quelques modèles d'équations aux dérivées partielles issues de la physique des plasmas. On s'intéresse principalement à l'analyse… (more)

Subjects/Keywords: Équations cinétiques; Plasma; Électrons sans masse; Vlasov-Poisson; Fokker-Planck; Entropie relative; Hypocoercivité; Limite de diffusion; Kinetic equations; Plasma; Massless electrons; Vlasov-Poisson; Fokker-Planck; Relative entropy; Hypocoercivity; Diffusion limit; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herda, M. (2017). Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2017LYSE1165

Chicago Manual of Style (16th Edition):

Herda, Maxime. “Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles.” 2017. Doctoral Dissertation, Lyon. Accessed December 04, 2020. http://www.theses.fr/2017LYSE1165.

MLA Handbook (7th Edition):

Herda, Maxime. “Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles.” 2017. Web. 04 Dec 2020.

Vancouver:

Herda M. Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles. [Internet] [Doctoral dissertation]. Lyon; 2017. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2017LYSE1165.

Council of Science Editors:

Herda M. Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées : Asymptotic and numerical analysis of kinetic and fluid models for the transport of charged particles. [Doctoral Dissertation]. Lyon; 2017. Available from: http://www.theses.fr/2017LYSE1165

14. Vavasseur, Arthur. Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment.

Degree: Docteur es, Mathématiques, 2016, Université Côte d'Azur (ComUE)

Dans cette thèse, nous étudions la généralisation à une infinité de particules d'un modèle hamiltonien décrivant les interactions entre une particule et son environnement. Le… (more)

Subjects/Keywords: Équations cinétiques; Équations de type Vlasov; Particules en interaction; Gaz de Lorentz inélastiques; Équations de Fokker-Planck; Hypocohercitivité; Limite de champ moyen; Kinetic equation; Vlasov–like equations; Interacting particles; Inelastic Lorentz gas; Fokker-Planck equation; Hypocohercivity; Mean-field regime

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vavasseur, A. (2016). Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2016AZUR4086

Chicago Manual of Style (16th Edition):

Vavasseur, Arthur. “Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment.” 2016. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed December 04, 2020. http://www.theses.fr/2016AZUR4086.

MLA Handbook (7th Edition):

Vavasseur, Arthur. “Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment.” 2016. Web. 04 Dec 2020.

Vancouver:

Vavasseur A. Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2016. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2016AZUR4086.

Council of Science Editors:

Vavasseur A. Modèles cinétiques de particules en interaction avec leur environnement : Kinetics models of particles interacting with their environment. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2016. Available from: http://www.theses.fr/2016AZUR4086

15. Mecherbet, Amina. Modélisation des fluides multiphasiques : Modeling of multiphase flows.

Degree: Docteur es, Mathématiques et modélisation, 2019, Montpellier

Dans cette thèse, nous nous intéressons à la modélisation et l'analyse mathématique de certains problèmes liés aux écoulements en suspension. Le premier chapitre concerne la… (more)

Subjects/Keywords: Écoulements de fluides multiphasiques; Écoulements en suspension; Équations de Stokes; Navier Stokes; Vlasov; Système d'interactions de particules; Homogénéisation; Méthode de réflexions; Multiphase fluid flows; Suspension flow; Stoks; Navier Stokes; Vlasov equations; System of interacting particles; Homogenization; Method of reflections

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mecherbet, A. (2019). Modélisation des fluides multiphasiques : Modeling of multiphase flows. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2019MONTS036

Chicago Manual of Style (16th Edition):

Mecherbet, Amina. “Modélisation des fluides multiphasiques : Modeling of multiphase flows.” 2019. Doctoral Dissertation, Montpellier. Accessed December 04, 2020. http://www.theses.fr/2019MONTS036.

MLA Handbook (7th Edition):

Mecherbet, Amina. “Modélisation des fluides multiphasiques : Modeling of multiphase flows.” 2019. Web. 04 Dec 2020.

Vancouver:

Mecherbet A. Modélisation des fluides multiphasiques : Modeling of multiphase flows. [Internet] [Doctoral dissertation]. Montpellier; 2019. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2019MONTS036.

Council of Science Editors:

Mecherbet A. Modélisation des fluides multiphasiques : Modeling of multiphase flows. [Doctoral Dissertation]. Montpellier; 2019. Available from: http://www.theses.fr/2019MONTS036

16. Allanson, Oliver Douglas. Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes.

Degree: PhD, 2017, University of St Andrews

Vlasov-Maxwell equilibria are characterised by the self-consistent descriptions of the steady-states of collisionless plasmas in particle phase-space, and balanced macroscopic forces. We study the theory… (more)

Subjects/Keywords: 530.4; Maxwell's equations; Distribution function; Collisionless plasma; Kinetic theory; Hermite polynomials; Equilibrium; Vlasov equation; Current sheet; Flux tube; Magnetopause; Force-free; Asymmetric; QC670.A66; Collisionless plasmas; Phase rule and equilibrium

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allanson, O. D. (2017). Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes. (Doctoral Dissertation). University of St Andrews. Retrieved from http://hdl.handle.net/10023/11916

Chicago Manual of Style (16th Edition):

Allanson, Oliver Douglas. “Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes.” 2017. Doctoral Dissertation, University of St Andrews. Accessed December 04, 2020. http://hdl.handle.net/10023/11916.

MLA Handbook (7th Edition):

Allanson, Oliver Douglas. “Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes.” 2017. Web. 04 Dec 2020.

Vancouver:

Allanson OD. Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes. [Internet] [Doctoral dissertation]. University of St Andrews; 2017. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10023/11916.

Council of Science Editors:

Allanson OD. Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubes. [Doctoral Dissertation]. University of St Andrews; 2017. Available from: http://hdl.handle.net/10023/11916

17. Fontaine, Adrien. Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas.

Degree: Docteur es, Mathématiques et applications, 2017, Rennes 1

Cette thèse décrit comment les ondes électromagnétiques se propagent dans les plasmas magnétisés, lorsque les fréquences sollicitées sont proches de la fréquence électron cyclotron. Elle… (more)

Subjects/Keywords: Equations de Vlasov-Maxwell relativistes; Plasmas froids magnétisés; Propagation d'ondes électromagnétiques; Relations de dispersion; Variété caractéristique; Equation eikonal; Equation de Appleton-Hartree; Plasmas chauds avec fort champ magnétique; Résonances cinétiques; Tenseur diélectrique; Transformée de Hilbert; Relativistic Vlasov-Maxwell equations; Cold magnetized plasmas; Electromagnetic wave propagation; Dispersion relations; Characteristic variety; Appleton-Hartree equations; Eikonal equations; Hot magnetized plasmas; Wave particle interaction; Kinetic resonances; Dielectric tensor; Hilbert transform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fontaine, A. (2017). Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2017REN1S029

Chicago Manual of Style (16th Edition):

Fontaine, Adrien. “Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas.” 2017. Doctoral Dissertation, Rennes 1. Accessed December 04, 2020. http://www.theses.fr/2017REN1S029.

MLA Handbook (7th Edition):

Fontaine, Adrien. “Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas.” 2017. Web. 04 Dec 2020.

Vancouver:

Fontaine A. Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas. [Internet] [Doctoral dissertation]. Rennes 1; 2017. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2017REN1S029.

Council of Science Editors:

Fontaine A. Relations de dispersion dans les plasmas magnétisés : Dispersion relations in magnetized plasmas. [Doctoral Dissertation]. Rennes 1; 2017. Available from: http://www.theses.fr/2017REN1S029

18. Métivier, David. Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap.

Degree: Docteur es, Physique, 2017, Université Côte d'Azur (ComUE)

Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dynamiques particulières. Pour décrire leur évolution dynamique, on utilise des… (more)

Subjects/Keywords: Dynamique; Réduction dimensionnelle; Non linéaire; Hors d'équilibre; Interactions à longue portée; Équation cinétique sans collisions; Vlasov; Fokker-Planck; Triple Zero; Oscillateurs couplés; Synchronisation; Kuramoto; Piège magnéto-optique; Atomes froids; Longueur de Debye; Dynamics; Dimensional reduction; Nonlinear; Out-of-equilibrium; Long-range interactions; Collisionless kinetics equations; Vlasov; Fokker-Planck; Triple Zero; Coupled oscillators; Synchronization; Kuramoto; Magneto-optical trap; Cold atoms; Debye length

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Métivier, D. (2017). Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2017AZUR4074

Chicago Manual of Style (16th Edition):

Métivier, David. “Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap.” 2017. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed December 04, 2020. http://www.theses.fr/2017AZUR4074.

MLA Handbook (7th Edition):

Métivier, David. “Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap.” 2017. Web. 04 Dec 2020.

Vancouver:

Métivier D. Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2017. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2017AZUR4074.

Council of Science Editors:

Métivier D. Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique : Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trap. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2017. Available from: http://www.theses.fr/2017AZUR4074

19. Smith, Greig. Properties and advances of probabilistic and statistical algorithms with applications in finance.

Degree: PhD, 2019, University of Edinburgh

 This thesis is concerned with the construction and enhancement of algorithms involving probability and statistics. The main motivation for these are problems that appear in… (more)

Subjects/Keywords: probability; estimation of chance; modelling dynamics; enhancement of algorithms; credit risk modelling; McKean Vlasov stochastic differential equations; Partial Differential Equations; continuous time Markov chain; Expectation Maximisation; Wald confidence intervals; probabilistic domain decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, G. (2019). Properties and advances of probabilistic and statistical algorithms with applications in finance. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/35601

Chicago Manual of Style (16th Edition):

Smith, Greig. “Properties and advances of probabilistic and statistical algorithms with applications in finance.” 2019. Doctoral Dissertation, University of Edinburgh. Accessed December 04, 2020. http://hdl.handle.net/1842/35601.

MLA Handbook (7th Edition):

Smith, Greig. “Properties and advances of probabilistic and statistical algorithms with applications in finance.” 2019. Web. 04 Dec 2020.

Vancouver:

Smith G. Properties and advances of probabilistic and statistical algorithms with applications in finance. [Internet] [Doctoral dissertation]. University of Edinburgh; 2019. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/1842/35601.

Council of Science Editors:

Smith G. Properties and advances of probabilistic and statistical algorithms with applications in finance. [Doctoral Dissertation]. University of Edinburgh; 2019. Available from: http://hdl.handle.net/1842/35601

20. Tse, Alvin Tsz Ho. Quantitative propagation of chaos of McKean-Vlasov equations via the master equation.

Degree: PhD, 2019, University of Edinburgh

 McKean-Vlasov stochastic differential equations (MVSDEs) are ubiquitous in kinetic theory and in controlled games with a large number of players. They have been intensively studied… (more)

Subjects/Keywords: propagation of chaos; McKean-Vlasov equations; stochastic analysis; partial differential equations; optimal transport

…An overview of the theory of McKean-Vlasov SDEs 2.1 Set-up of the mean-field model… …x5B;61] by A. Sznitman in the context of Boltzmann equations. In a probabilistic… …Vlasov SDEs. Example 1: Individual-Based Models in mathematical biology We consider Individual… …t . This is an example of McKean-Vlasov SDEs, for which the coefficients depend on the law… …player PDE system (a system of Hamilton-Jacobi-Bellman (HJB) equations)… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tse, A. T. H. (2019). Quantitative propagation of chaos of McKean-Vlasov equations via the master equation. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/36096

Chicago Manual of Style (16th Edition):

Tse, Alvin Tsz Ho. “Quantitative propagation of chaos of McKean-Vlasov equations via the master equation.” 2019. Doctoral Dissertation, University of Edinburgh. Accessed December 04, 2020. http://hdl.handle.net/1842/36096.

MLA Handbook (7th Edition):

Tse, Alvin Tsz Ho. “Quantitative propagation of chaos of McKean-Vlasov equations via the master equation.” 2019. Web. 04 Dec 2020.

Vancouver:

Tse ATH. Quantitative propagation of chaos of McKean-Vlasov equations via the master equation. [Internet] [Doctoral dissertation]. University of Edinburgh; 2019. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/1842/36096.

Council of Science Editors:

Tse ATH. Quantitative propagation of chaos of McKean-Vlasov equations via the master equation. [Doctoral Dissertation]. University of Edinburgh; 2019. Available from: http://hdl.handle.net/1842/36096

21. Lind, Crystal. The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle.

Degree: Department of Mathematics and Statistics, 2014, University of Victoria

 The Vlasov-Poisson system is most commonly used to model the movement of charged particles in a plasma or of stars in a galaxy. It consists… (more)

Subjects/Keywords: Vlasov; Poisson; Curved spaces; 2-sphere; Kinetic equations; Collisionless Boltzmann equation; Gauss's Law; Conservation laws; Non-Euclidean; Potential; Gravitational Force; Gravitational potential; Gravity; Equation of motion

Vlasov system [20]. Again, if relativity is ignored, the Vlasov-Poisson equations are… …we identify the Vlasov-Poisson system as the logical set of equations to study. However… …have derived the new Poisson and Vlasov equations, we can put them together to form the… …equations which can be used to accurately predict how the distribution will evolve in time. In… …Euclidean space, the equations have been established for many years so we simply choose the… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lind, C. (2014). The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/5613

Chicago Manual of Style (16th Edition):

Lind, Crystal. “The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle.” 2014. Masters Thesis, University of Victoria. Accessed December 04, 2020. http://hdl.handle.net/1828/5613.

MLA Handbook (7th Edition):

Lind, Crystal. “The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle.” 2014. Web. 04 Dec 2020.

Vancouver:

Lind C. The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle. [Internet] [Masters thesis]. University of Victoria; 2014. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/1828/5613.

Council of Science Editors:

Lind C. The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle. [Masters Thesis]. University of Victoria; 2014. Available from: http://hdl.handle.net/1828/5613

.