Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Virtual knots). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

 A meta-theory is described whereby any diagrammatic knot theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and… (more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed August 06, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 06 Aug 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Boise State University

2. Byrd, Rachel Elizabeth. On the Geometry of Virtual Knots.

Degree: 2012, Boise State University

 The Dehn complex of prime, alternating virtual links has been shown to be non-positively curved in the paper "Generalized knot complements and some aspherical ribbon… (more)

Subjects/Keywords: virtual knots; Dehn complex; non-positive curvature; Wirtinger complex; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Byrd, R. E. (2012). On the Geometry of Virtual Knots. (Thesis). Boise State University. Retrieved from https://scholarworks.boisestate.edu/td/263

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Byrd, Rachel Elizabeth. “On the Geometry of Virtual Knots.” 2012. Thesis, Boise State University. Accessed August 06, 2020. https://scholarworks.boisestate.edu/td/263.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Byrd, Rachel Elizabeth. “On the Geometry of Virtual Knots.” 2012. Web. 06 Aug 2020.

Vancouver:

Byrd RE. On the Geometry of Virtual Knots. [Internet] [Thesis]. Boise State University; 2012. [cited 2020 Aug 06]. Available from: https://scholarworks.boisestate.edu/td/263.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Byrd RE. On the Geometry of Virtual Knots. [Thesis]. Boise State University; 2012. Available from: https://scholarworks.boisestate.edu/td/263

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Cisneros de la Cruz, Bruno Aarón. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.

Degree: Docteur es, Mathématiques, 2015, Université de Bourgogne

Le but de cette thèse est de fournir une caractérisation topologique de tresses virtuelles. Les tresses virtuelles sont des classes d’équivalence de diagrammes de type… (more)

Subjects/Keywords: Noeuds virtuels; Tresses virtuelles; Théorie de noeuds; Théorie de groupes; Virtual knots; Virtual braids; Knot theory; Group theory; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cisneros de la Cruz, B. A. (2015). Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2015DIJOS025

Chicago Manual of Style (16th Edition):

Cisneros de la Cruz, Bruno Aarón. “Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.” 2015. Doctoral Dissertation, Université de Bourgogne. Accessed August 06, 2020. http://www.theses.fr/2015DIJOS025.

MLA Handbook (7th Edition):

Cisneros de la Cruz, Bruno Aarón. “Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.” 2015. Web. 06 Aug 2020.

Vancouver:

Cisneros de la Cruz BA. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2015. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2015DIJOS025.

Council of Science Editors:

Cisneros de la Cruz BA. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. [Doctoral Dissertation]. Université de Bourgogne; 2015. Available from: http://www.theses.fr/2015DIJOS025

4. Leung, Louis. Classical Lie Algebra Weight Systems of Arrow Diagrams.

Degree: 2010, University of Toronto

The notion of finite type invariants of virtual knots, introduced by Goussarov, Polyak and Viro, leads to the study of the space of diagrams with… (more)

Subjects/Keywords: knot theory; virtual knots; weight systems; 0405

…systems This section is a review of the notion of finite type invariants of virtual knots and… …weight systems and finite type invariants of oriented virtual knots modulo “braid-like… …part of the knot involved is locally a braid. We say an invariant of virtual knots is of type… …braid-like virtual knots is the space of (long) 7 Figure 1.11. Reidemeister II in… …of type n of braid-like virtual knots are those which vanish on diagrams with 8 more than… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leung, L. (2010). Classical Lie Algebra Weight Systems of Arrow Diagrams. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26366

Chicago Manual of Style (16th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Doctoral Dissertation, University of Toronto. Accessed August 06, 2020. http://hdl.handle.net/1807/26366.

MLA Handbook (7th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Web. 06 Aug 2020.

Vancouver:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1807/26366.

Council of Science Editors:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26366

.