Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Vanishing theorems ). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Chou, Chih-Chi. Singularities in Birational Geometry.

Degree: 2014, University of Illinois – Chicago

 In this thesis we study singularities in birational geometry. In the first part, we investigate log canonical singularities and its relation with rational singularities. In… (more)

Subjects/Keywords: Log canonical singularities; Rational singularities; Vanishing theorems.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chou, C. (2014). Singularities in Birational Geometry. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chou, Chih-Chi. “Singularities in Birational Geometry.” 2014. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/19077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chou, Chih-Chi. “Singularities in Birational Geometry.” 2014. Web. 12 Jul 2020.

Vancouver:

Chou C. Singularities in Birational Geometry. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/19077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chou C. Singularities in Birational Geometry. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/19077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Yang, Xiaokui. Positivity and vanishing theorems in complex and algebraic geometry.

Degree: Mathematics, 2012, UCLA

 In this thesis, we consider geometric properties of vector bundlesarising from algebraic and Hermitian geometry. On vector bundles in algebraic geometry, such as ample, nef… (more)

Subjects/Keywords: Mathematics; curvature; positivity; vanishing theorems

…x28;2) K.-F. Liu; X.-F. Sun and X.-K. Yang, Positivity and vanishing theorems for ample… …Positivity and vanishing theorems for vector bundles over K¨ ahler manifolds 1.1 Introduction Let… …vanishing theorems of type H q,n . For more details, see Section 1.6. As applications of Theorem… …dual-Nakano-positivity for vector bundles are vanishing theorems. In this chapter, we obtain… …many vanishing theorems for various vector bundles which can also be viewed as… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, X. (2012). Positivity and vanishing theorems in complex and algebraic geometry. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/5bh4q69r

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Xiaokui. “Positivity and vanishing theorems in complex and algebraic geometry.” 2012. Thesis, UCLA. Accessed July 12, 2020. http://www.escholarship.org/uc/item/5bh4q69r.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Xiaokui. “Positivity and vanishing theorems in complex and algebraic geometry.” 2012. Web. 12 Jul 2020.

Vancouver:

Yang X. Positivity and vanishing theorems in complex and algebraic geometry. [Internet] [Thesis]. UCLA; 2012. [cited 2020 Jul 12]. Available from: http://www.escholarship.org/uc/item/5bh4q69r.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang X. Positivity and vanishing theorems in complex and algebraic geometry. [Thesis]. UCLA; 2012. Available from: http://www.escholarship.org/uc/item/5bh4q69r

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Grenoble

3. Cao, Junyan. Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds.

Degree: Docteur es, Mathématiques, 2013, Université de Grenoble

L'objet principal de cette thèse est de généraliser un certain nombre de résultats bien connus de la géométrie algébrique au cas k"{a}hlerien non nécessairement projectif.… (more)

Subjects/Keywords: Variétés kählériennes; Théorème d'annulation; Propriétés cohomologiques; Kähler manifolds; Vanishing theorems; Properties of cohomologies; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cao, J. (2013). Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2013GRENM017

Chicago Manual of Style (16th Edition):

Cao, Junyan. “Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds.” 2013. Doctoral Dissertation, Université de Grenoble. Accessed July 12, 2020. http://www.theses.fr/2013GRENM017.

MLA Handbook (7th Edition):

Cao, Junyan. “Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds.” 2013. Web. 12 Jul 2020.

Vancouver:

Cao J. Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds. [Internet] [Doctoral dissertation]. Université de Grenoble; 2013. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2013GRENM017.

Council of Science Editors:

Cao J. Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes : Vanishing theorems and structure theorems of compact kähler manifolds. [Doctoral Dissertation]. Université de Grenoble; 2013. Available from: http://www.theses.fr/2013GRENM017


University of Illinois – Chicago

4. Niu, Wenbo. Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties.

Degree: 2012, University of Illinois – Chicago

 In this monograph, we study bounds for the Castelnuovo-Mumford regularity of algebraic varieties. In chapter three, we give a computational bounds for an homogeneous ideal,… (more)

Subjects/Keywords: Castelnuovo-Mumford regularity; powers of ideals; symbolic powers; multiplier ideal sheaves; vanishing theorems; asymptotic regularity; multiregularity; Mukai regularity.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Niu, W. (2012). Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9630

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Niu, Wenbo. “Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties.” 2012. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/9630.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Niu, Wenbo. “Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties.” 2012. Web. 12 Jul 2020.

Vancouver:

Niu W. Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/9630.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Niu W. Bounding the Castelnuovo-Mumford Regularity of Algebraic Varieties. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9630

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

5. Girard, Vincent. Géométrie algébrique : théorèmes d'annulation sur les variétés toriques .

Degree: 2018, Université de Montréal

Subjects/Keywords: Variétés algébriques; Variétés toriques; Faisceaux; Cohomologie de faisceaux; Théorèmes d'annulation; Algebraic varieties; Toric varieties; Sheaves; Sheaves cohomology; Vanishing theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Girard, V. (2018). Géométrie algébrique : théorèmes d'annulation sur les variétés toriques . (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/20200

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Girard, Vincent. “Géométrie algébrique : théorèmes d'annulation sur les variétés toriques .” 2018. Thesis, Université de Montréal. Accessed July 12, 2020. http://hdl.handle.net/1866/20200.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Girard, Vincent. “Géométrie algébrique : théorèmes d'annulation sur les variétés toriques .” 2018. Web. 12 Jul 2020.

Vancouver:

Girard V. Géométrie algébrique : théorèmes d'annulation sur les variétés toriques . [Internet] [Thesis]. Université de Montréal; 2018. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/1866/20200.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Girard V. Géométrie algébrique : théorèmes d'annulation sur les variétés toriques . [Thesis]. Université de Montréal; 2018. Available from: http://hdl.handle.net/1866/20200

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Liu, Jie. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.

Degree: Docteur es, Mathématiques, 2018, Université Côte d'Azur (ComUE)

Cette thèse est consacrée à l'étude de la géométrie des variétés de Fano complexes en utilisant les propriétés des sous-faisceaux du fibré tangent et la… (more)

Subjects/Keywords: Variétés de Fano; Espaces projectifs; Faisceaux amples; Feuilletages; Stabilité; Espaces hermitiens symétriques; Théorèmes d'annulation; Intersections complètes; Propriétés de Lefschetz; Non-annulation; Seconde classe de Chern; Birationalité; Diviseurs fondamentaux; Constante de Seshadri; Variétés de Moishezon; Singularités; Courbes rationnelles; Théorie de Mori; Fano varieties; Projective spaces; Ample sheaves; Foliations; Stability; Hermitian symmetric spaces; Vanishing theorems; Complete intersects; Lefschetz properties; Non-vanishing; Second Chern class; Birationality; Fundamental divisors; Seshadri constants; Moishezon manifolds; Singularities; Rational curves; Mori theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2018). Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2018AZUR4038

Chicago Manual of Style (16th Edition):

Liu, Jie. “Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.” 2018. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed July 12, 2020. http://www.theses.fr/2018AZUR4038.

MLA Handbook (7th Edition):

Liu, Jie. “Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.” 2018. Web. 12 Jul 2020.

Vancouver:

Liu J. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2018. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2018AZUR4038.

Council of Science Editors:

Liu J. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2018. Available from: http://www.theses.fr/2018AZUR4038

.