You searched for subject:(Vanishing cycles)
.
Showing records 1 – 6 of
6 total matches.
No search limiters apply to these results.

ETH Zürich
1.
Antony, Charel.
Gradient Trajectories Near Real And Complex A2-singularities.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/284182
► In this thesis, the existence and uniqueness of gradient trajectories near an A2-singularity are analysed. The A2-singularity is called a birth-death critical point in the…
(more)
▼ In this thesis, the existence and uniqueness of gradient trajectories near an A
2-singularity are analysed. The A
2-singularity is called a birth-death critical point in the real case.
The birth-death critical point appears in a one-parameter family of functions. Such a family of functions has precisely two Morse critical points of index difference one, on the birth side. The result of the real case states that these two critical points are joined by a unique gradient trajectory up to time-shift. Here the gradient flow is defined with respect to any family of Riemannian metrics. This can be viewed as a converse to Smale's cancellation theorem.
We also look at the complex analogue of the result in Picard – Lefschetz theory. This analogue considers a holomorphic one-parameter family with an A
2-singularity. Such a family has two critical Morse critical points near the singularity for every small non-zero parameter. We prove that the two Lagrangian
vanishing cycles associated to these critical points intersect transversally in exactly one point in all regular fibres along a straight line. The result is obtained by analysing the gradient trajectories of the real part of these functions.
Both proofs start with a normal form in local coordinates for such families of functions. The gradient equations in these coordinates can be rescaled into a fast-slow system of non-linear differential equation. Existence will rely on an adiabatic limit analysis whereas uniqueness follows from a Conley index pair construction. The latter construction will also show that connecting gradient trajectories cannot leave the local charts. Even though the proof of these two results follow from similar lines of argument, the real case cannot be reduced to the complex case and vice versa.
Advisors/Committee Members: Salamon, Dietmar, Frauenfelder, Urs, Biran, Paul.
Subjects/Keywords: Birth-death; Critical point; Gradient flow; A_2 singularity; vanishing cycles; Whitney Lemma; Adiabatic Limit; Conley Index Pair; Existence and uniqueness of solutions; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Antony, C. (2018). Gradient Trajectories Near Real And Complex A2-singularities. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/284182
Chicago Manual of Style (16th Edition):
Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Doctoral Dissertation, ETH Zürich. Accessed April 13, 2021.
http://hdl.handle.net/20.500.11850/284182.
MLA Handbook (7th Edition):
Antony, Charel. “Gradient Trajectories Near Real And Complex A2-singularities.” 2018. Web. 13 Apr 2021.
Vancouver:
Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Apr 13].
Available from: http://hdl.handle.net/20.500.11850/284182.
Council of Science Editors:
Antony C. Gradient Trajectories Near Real And Complex A2-singularities. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/284182
2.
Vérine, Alexandre.
Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.
Degree: Docteur es, Mathématiques, 2018, Lyon
URL: http://www.theses.fr/2018LYSEN038
► La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par…
(more)
▼ La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par les travaux d’Eliashberget et Cieliebak sur la pseudoconvexité d'autre part. Les travaux présentés dans cette thèse sont motivés par ces deux liens. On donne d’abord la caractérisation symplectique suivante des constantes de Seshadri. Dans une variété complexe, la constante de Seshadri d’une classe de Kähler entière en un point est la borne supérieure des capacités de boules standard admettant, pour une certaine forme de Kähler dans cette classe, un plongement holomorphe et iso-Kähler de codimension 0 centré en ce point. Ce critère était connu de Eckl en 2014 ; on en donne une preuve différente. La deuxième partie est motivée par la question suivante de Donaldson : <<Toute sphère lagrangienne d'une variété projective complexe est-elle un cycle évanescent d'une déformation complexe vers une variété à singularité conique ?>> D'une part, on présente toute sous-variété lagrangienne close d’une variété symplectique/kählérienne close dont les périodes relatives sont entières comme lieu des minima d’une exhaustion <<convexe>> définie sur le complémentaire d'une section hyperplane symplectique/complexe. Dans le cadre kählérien, <<convexe>> signifie strictement plurisousharmonique tandis que dans le cadre symplectique, cela signifie de Lyapounov pour un champ de Liouville. D'autre part, on montre que toute sphère lagrangienne d'un domaine de Stein qui est le lieu des minima d’une fonction <<convexe>> est un cycle évanescent d'une déformation complexe sur le disque vers un domaine à singularité conique.
Symplectic geometry and complex geometry are closely related, in particular by Donaldson and Auroux’s asymptotically holomorphic techniques and by Eliashberg and Cieliebak’s work on pseudoconvexity. The work presented in this thesis is motivated by these two connections. We first give the following symplectic characterisation of Seshadri constants. In a complex manifold, the Seshadri constant of an integral Kähler class at a point is the upper bound on the capacities of standard balls admitting, for some Kähler form in this class, a codimension 0 holomorphic and iso-Kähler embedding centered at this point. This criterion was known by Eckl in 2014; we give a different proof of it. The second part is motivated by Donaldon’s following question: ‘Is every Lagrangian sphere of a complex projective manifold a vanishing cycle of a complex deformation to a variety with a conical singularity?’ On the one hand, we present every closed Lagrangian submanifold of a closed symplectic/Kähler manifold whose relative periods are integers as the lowest level set of a ‘convex’ exhaustion defined on the complement of a symplectic/complex hyperplane section. In the Kähler setting ‘complex’ means strictly plurisubharmonic while in the symplectic setting it refers to the existence of a Liouville pseudogradient. On the other hand, we prove that any Lagrangian sphere of a…
Advisors/Committee Members: Giroux, Emmanuel (thesis director).
Subjects/Keywords: Fonctions plurisousharmoniques; Domaines de Stein; Cycles évanescents; Cobordismes de Weinstein; Sections hyperplanes; Constantes de Seshadri; Variétés symplectiques; Plurisubharmonic functions; Vanishing cycles; Stein domains; Weinstein cobordisms; Hyperplane sections; Seshadri constants; Symplectic manifolds
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Vérine, A. (2018). Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2018LYSEN038
Chicago Manual of Style (16th Edition):
Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Doctoral Dissertation, Lyon. Accessed April 13, 2021.
http://www.theses.fr/2018LYSEN038.
MLA Handbook (7th Edition):
Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Web. 13 Apr 2021.
Vancouver:
Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Internet] [Doctoral dissertation]. Lyon; 2018. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2018LYSEN038.
Council of Science Editors:
Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Doctoral Dissertation]. Lyon; 2018. Available from: http://www.theses.fr/2018LYSEN038
3.
Bilu, Margaret.
Produits eulériens motiviques : Motivic Euler products.
Degree: Docteur es, Mathématiques fondamentales, 2017, Université Paris-Saclay (ComUE)
URL: http://www.theses.fr/2017SACLS485
► L’objectif de cette thèse est l’étude de la fonction zêta des hauteurs motivique associée à un problème de comptage de courbes sur les compactifications équivariantes…
(more)
▼ L’objectif de cette thèse est l’étude de la fonction zêta des hauteurs motivique associée à un problème de comptage de courbes sur les compactifications équivariantes d’espaces affines, résolvant au chapitre 6 l’analogue motivique de la conjecture de Manin pour celles-ci. La fonction zêta des hauteurs provenant du problème de comptage considéré est récrite convenablement à l’aide d'une formule de Poisson motivique démontrée au cinquième chapitre, qui généralise celle de Hrushovski-Kazhdan. Chaque terme est alors décomposé sous la forme d'un produit eulérien motivique, dont la définition et les propriétés sont établies au chapitre 3. La convergence de ces produits eulériens doit être comprise pour une topologie des poids que nous introduisons au quatrième chapitre et qui repose d'une part sur la théorie des modules de Hodge de Saito, et d'autre part sur une mesure motivique sur l’anneau de Grothendieck des variétés avec exponentielles, construite dans le chapitre 2 à l’aide de la notion de cycles évanescents motiviques. On en déduit ainsi une description de l'asymptotique d'une proportion positive des coefficients du polynôme de Hodge-Deligne des espaces de modules des courbes sur la compactification équivariante donnée, lorsque le degré tend vers l'infini.
The goal of this thesis is the study of the motivic height zeta function associated to the problem of counting curves on equivariant compactifications of vector groups, solving in chapter 6 the motivic analogue of Manin's conjecture for such varieties.The motivic height zeta function coming from this counting problem is rewritten in a convenient way using a Poisson summation formula proved in chapter 5, and which generalises Hrushovski and Kazhdan's motivic Poisson formula. Each term is then expressed as a motivic Euler product, the definition and properties of the latter being established in chapter 3. The convergence of these Euler products must be understood for a weight topology which we introduce in the fourth chapter and which relies both on Saito's theory of mixed Hodge modules and on a motivic measure on the Grothendieck ring of varieties with exponentials, constructed in chapter 2 using the notion of motivic vanishing cycles. We deduce from this a description of the asymptotic of a positive proportion of the coefficients of the Hodge-Deligne polynomial of the moduli spaces of curves on the given equivariant compactification, when the degree goes to infinity.
Advisors/Committee Members: Chambert-Loir, Antoine (thesis director).
Subjects/Keywords: Anneau de Grothendieck des variétés; Compactifications équivariantes d'espaces affines; Théorie de Hodge; Hauteurs; Problème de Manin; Cycles évanescents; Grothendieck ring of varieties; Equivariant compactifications of vector groups; Hodge theory; Heights; Manin's problem; Vanishing cycles
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Bilu, M. (2017). Produits eulériens motiviques : Motivic Euler products. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2017SACLS485
Chicago Manual of Style (16th Edition):
Bilu, Margaret. “Produits eulériens motiviques : Motivic Euler products.” 2017. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 13, 2021.
http://www.theses.fr/2017SACLS485.
MLA Handbook (7th Edition):
Bilu, Margaret. “Produits eulériens motiviques : Motivic Euler products.” 2017. Web. 13 Apr 2021.
Vancouver:
Bilu M. Produits eulériens motiviques : Motivic Euler products. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2017. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2017SACLS485.
Council of Science Editors:
Bilu M. Produits eulériens motiviques : Motivic Euler products. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2017. Available from: http://www.theses.fr/2017SACLS485
4.
Kochersperger, Matthieu.
Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.
Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)
URL: http://www.theses.fr/2018SACLX041
► Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un…
(more)
▼ Dans cette thèse nous nous intéressons aux singularités d'espaces analytiques complexes définis comme le lieu des zéros d'un morphisme sans pente. Nous étudions dans un premier temps les cycles proches et les cycles évanescents associés à un tel morphisme. Dans un deuxième temps nous cherchons à comprendre la théorie de Hodge des morphismes sans pente.La première partie de cette thèse est consacrée à apporter des compléments au travail de P. Maisonobe sur les morphismes sans pente. Nous commençons par construire un morphisme de comparaison entre cycles proches algébriques (pour les D-modules) et cycles proches topologiques (pour les faisceaux pervers). Nous montrons ensuite que ce morphisme est un isomorphisme dans le cas d'un morphisme sans pente. Enfin nous construisons un foncteur cycles évanescents topologiques pour un morphisme sans pente et nous démontrons que ce foncteur et le foncteur cycles proches topologiques de P. Maisonobe se placent dans le diagramme de triangles exacts attendu.Dans la seconde partie de cette thèse nous étudions les morphismes sans pente pour les modules de Hodge mixtes. Nous démontrons dans un premier temps la commutativité des cycles proches et des cycles évanescents itérés appliqués à un module de Hodge mixte dans le cas d'un morphisme sans pente. Dans un deuxième temps nous définissons la notion "strictement sans pente" pour un module de Hodge mixte et nous démontrons sa stabilité par image directe propre. Nous démontrons comme application la compatibilité de la filtration de Hodge et des filtrations de Kashiwara-Malgrange pour certains modules de Hodge purs supportés sur une hypersurface à singularités quasi-ordinaires.
In this thesis we are interested in singularities of complex varieties defined as the zero locus of a morphism without slope. In a first time we study nearby cycles and vanishing cycles associated to such morphisms. In a second time we want to understand Hodge theory of morphisms without slope.The first part of this thesis is devoted to add some complements to the work of P. Maisonobe on morphisms without slope. We start with the construction of a comparison morphism between algebraic nearby cycles (for D-modules) and topological nearby cycles (for perverse sheaves). Then we show that this morphism is an isomorphism in the case of a morphism without slope. Finally we construct a topological vanishing cycles functor for a morphism without slope et we prove that this functor and the topological nearby cycles functor of P. Maisonobe fit into the expected diagram of exact triangles.In the second part of the thesis we study morphisms without slope for mixed Hodge modules. We first show the commutativity of iterated nearby cycles and vanishing cycles applied to a mixed Hodge module in the case of a morphism without slope. Second we define the notion "strictly without slope" for a mixed Hodge module and we show that it is preserved by proper direct image. As an application we prove the compatibility of the Hodge filtration and Kashiwara-Malgrange filtrations for some…
Advisors/Committee Members: Sabbah, Claude (thesis director).
Subjects/Keywords: Morphisme sans pente; Cycles évanescents; Multifiltration de Kashiwara-Malgrange; Modules de Hodge mixtes; D-Modules; Faisceaux pervers; Cycles proches; Morphisms without slope; Vanishing cycles; Kashiwara-Malgrange multifiltration; Mixed Hodge modules; D-Modules; Perverse sheaves; Nearby cycles; 514.74
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Kochersperger, M. (2018). Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLX041
Chicago Manual of Style (16th Edition):
Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 13, 2021.
http://www.theses.fr/2018SACLX041.
MLA Handbook (7th Edition):
Kochersperger, Matthieu. “Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope.” 2018. Web. 13 Apr 2021.
Vancouver:
Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2018SACLX041.
Council of Science Editors:
Kochersperger M. Cycles proches, cycles évanescents et théorie de Hodge pour les morphismes sans pente : Nearby cycles, vanishing cycles and Hodge theory for morphisms without slope. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLX041
5.
Brillon, Laura.
Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems.
Degree: Docteur es, Mathématiques fondamentales, 2017, Université Toulouse III – Paul Sabatier
URL: http://www.theses.fr/2017TOU30077
► Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les…
(more)
▼ Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron – Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons.
In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron – Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.
Advisors/Committee Members: Schechtman, Vadim (thesis director).
Subjects/Keywords: Matrices de Cartan; Elément de Coxeter; Vecteur de Perron; Frobenius; Cycle évanescent; Théorème de Sebastiani; Thom; Q-déformations; Systèmes de Toda; Bases distinguées; Matrices de Gabrielov; Cartan matrices; Coxeter element; Perron – Frobenius eigenvectors; Vanishing cycles; Sebastiani – Thom theorem; Q-deformation; Toda systems; Distinguished basis; Gabrielov's matrices
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Brillon, L. (2017). Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2017TOU30077
Chicago Manual of Style (16th Edition):
Brillon, Laura. “Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems.” 2017. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed April 13, 2021.
http://www.theses.fr/2017TOU30077.
MLA Handbook (7th Edition):
Brillon, Laura. “Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems.” 2017. Web. 13 Apr 2021.
Vancouver:
Brillon L. Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2017. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2017TOU30077.
Council of Science Editors:
Brillon L. Matrices de Cartan, bases distinguées et systèmes de Toda : Cartan matrix, distinguished basis and Toda's systems. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2017. Available from: http://www.theses.fr/2017TOU30077
6.
Pippi, Massimo.
Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.
Degree: Docteur es, Mathématiques et Applications, 2020, Université Toulouse III – Paul Sabatier
URL: http://www.theses.fr/2020TOU30049
► Le but de cette thèse est d'étudier les dg-catégories de singularités Sing(X, s), associées à des couples (X, s), où X est un schéma et…
(more)
▼ Le but de cette thèse est d'étudier les dg-catégories de singularités Sing(X, s), associées à des couples (X, s), où X est un schéma et s est une section d'un fibré vectoriel sur X. La dg-catégorie Sing(X, s) est définie comme le noyau du dg foncteur de Sing(X0) vers Sing(X) induit par l'image directe le long de l'inclusion du lieu de zéros (dérivé) X0 de s dans X. Dans une première partie, nous supposons que le fibré vectoriel est trivial de rang n. On démontre alors un théorème de structure pour Sing(X, s) dans le cas où X = Spec(B) est affine. Cet énoncé affirme que tout objet de Sing(X, s) est représenté par un complexe de B-modules concentré dans n+1 degrés. Lorsque n = 1, cet énoncé généralise l'équivalence d'Orlov , qui identifie Sing(X, s) avec la dg-catégorie des factorisations matricielles MF(X, s), au cas où s epsilon OX(X) n'est pas nécessairement plat. Dans une seconde partie, nous étudions la cohomologie l-adique de Sing(X, s) (définie par A. Blanc - M. Robalo - B. Toën and G. Vezzosi), où s est une section globale d'un fibré en droites. Pour cela, on introduit le faisceau l-adique des cycles évanescents invariantes par monodromie. En utilisant un théorème de D. Orlov généralisé par J. Burke et M. Walker, on calcule la réalisation l-adique de Sing(Spec(B), (f1 ,..., fn)) pour (f1 ,..., fn) epsilon Bn. Dans le dernier chapitre, nous introduisons les faisceaux l-adiques des cycles évanescents itérés pour un schéma sur un anneau de valuation discrète de rang 2. On relie ces faisceaux l-adiques à la réalisation l-adique des dg catégories de singularités des fibres prises sur certains sous-schémas fermés de la base.
The aim of this thesis is to study the dg categories of singularities Sing(X, s) of pairs (X, s), where X is a scheme and s is a global section of some vector bundle over X. Sing(X, s) is defined as the kernel of the dg functor from Sing(X0) to Sing(X) induced by the pushforward along the inclusion of the (derived) zero locus X0 of s in X. In the first part, we restrict ourselves to the case where the vector bundle is trivial. We prove a structure theorem for Sing(X, s) when X = Spec(B) is affine. Roughly, it tells us that every object in Sing(X, s) is represented by a complex of B-modules concentrated in n + 1 consecutive degrees (if s epsilon Bn). By specializing to the case n = 1, we generalize Orlov's theorem, which identifies Sing(X, s) with the dg category of matrix factorizations MF(X, s), to the case where s epsilon OX(X) is not flat. In the second part, we study the l-adic cohomology of Sing(X, s) (as defined by A. Blanc - M. Robalo - B. Toën and G. Vezzosi) when s is a global section of a line bundle. In order to do so, we introduce the l-adic sheaf of monodromy-invariant vanishing cycles. Using a theorem of D. Orlov generalized by J. Burke and M. Walker, we compute the l-adic realization of Sing(Spec(B), (f1 ,..., fn)) for (f1 ,..., fn) epsilon Bn. In the last chapter, we introduce the l-adic sheaves of iterated vanishing cycles of a scheme over a discrete valuation ring of rank 2.…
Advisors/Committee Members: Toën, Bertrand (thesis director), Vezzosi, Gabriele (thesis director).
Subjects/Keywords: Géométrie algébrique dérivée; Géométrie non-commutative; Cycles évanescents; Dg-catégories des singularités; Factorisations matricielles; Réalisations motivique et l-adique des dg-catégories; Derived algebraic geometry; Non-commutative geometry; Vanishing cycles; Dg categories of singularitie; Matrix factorizations; Motivic and`-adic realizationsof dg categories
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Pippi, M. (2020). Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2020TOU30049
Chicago Manual of Style (16th Edition):
Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed April 13, 2021.
http://www.theses.fr/2020TOU30049.
MLA Handbook (7th Edition):
Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Web. 13 Apr 2021.
Vancouver:
Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2020. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2020TOU30049.
Council of Science Editors:
Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2020. Available from: http://www.theses.fr/2020TOU30049
.