Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Valued Fields). Showing records 1 – 14 of 14 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of California – Berkeley

1. Anderson, Meghan. Solution Spaces for Linear Equations in Valued D-Fields.

Degree: Mathematics, 2011, University of California – Berkeley

 In his 1997 thesis, Thomas Scanlon developed the model theory of a class of valued fields, which allow for the consideration of a difference field… (more)

Subjects/Keywords: Mathematics; Differential Algebra; Model Theory; Valued D-fields; Valued Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anderson, M. (2011). Solution Spaces for Linear Equations in Valued D-Fields. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/99t5b0vk

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Anderson, Meghan. “Solution Spaces for Linear Equations in Valued D-Fields.” 2011. Thesis, University of California – Berkeley. Accessed July 03, 2020. http://www.escholarship.org/uc/item/99t5b0vk.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Anderson, Meghan. “Solution Spaces for Linear Equations in Valued D-Fields.” 2011. Web. 03 Jul 2020.

Vancouver:

Anderson M. Solution Spaces for Linear Equations in Valued D-Fields. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2020 Jul 03]. Available from: http://www.escholarship.org/uc/item/99t5b0vk.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Anderson M. Solution Spaces for Linear Equations in Valued D-Fields. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/99t5b0vk

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

2. Johnson, William Andrew. Fun with Fields.

Degree: Mathematics, 2016, University of California – Berkeley

 This dissertation is a collection of results in model theory, related in one way or another to fields, NIP theories, and elimination of imaginaries. The… (more)

Subjects/Keywords: Mathematics; Model theory; Stability theory; Valued fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, W. A. (2016). Fun with Fields. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6kx1f5g3

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Johnson, William Andrew. “Fun with Fields.” 2016. Thesis, University of California – Berkeley. Accessed July 03, 2020. http://www.escholarship.org/uc/item/6kx1f5g3.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Johnson, William Andrew. “Fun with Fields.” 2016. Web. 03 Jul 2020.

Vancouver:

Johnson WA. Fun with Fields. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Jul 03]. Available from: http://www.escholarship.org/uc/item/6kx1f5g3.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johnson WA. Fun with Fields. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/6kx1f5g3

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

3. Sinclair, Peter. Relationships between Model Theory and Valuations of Fields.

Degree: PhD, 2018, McMaster University

This thesis explores some of the relationships between model theoretic and algebraic properties of fields, focusing on valuations of fields. We first show that the… (more)

Subjects/Keywords: Model Theory; Algebra; Valued Fields; Dp-rank

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sinclair, P. (2018). Relationships between Model Theory and Valuations of Fields. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/23326

Chicago Manual of Style (16th Edition):

Sinclair, Peter. “Relationships between Model Theory and Valuations of Fields.” 2018. Doctoral Dissertation, McMaster University. Accessed July 03, 2020. http://hdl.handle.net/11375/23326.

MLA Handbook (7th Edition):

Sinclair, Peter. “Relationships between Model Theory and Valuations of Fields.” 2018. Web. 03 Jul 2020.

Vancouver:

Sinclair P. Relationships between Model Theory and Valuations of Fields. [Internet] [Doctoral dissertation]. McMaster University; 2018. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/11375/23326.

Council of Science Editors:

Sinclair P. Relationships between Model Theory and Valuations of Fields. [Doctoral Dissertation]. McMaster University; 2018. Available from: http://hdl.handle.net/11375/23326


University of Illinois – Urbana-Champaign

4. Camacho Ahumada, Santiago. Truncation in differential Hahn fields.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 Being closed under truncation for subsets of generalized series fields is a robust property in the sense that it is preserved under various algebraic and… (more)

Subjects/Keywords: Valued Fields; Transseries; Truncation; Differential Algebra; Hahn Fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Camacho Ahumada, S. (2018). Truncation in differential Hahn fields. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/100890

Chicago Manual of Style (16th Edition):

Camacho Ahumada, Santiago. “Truncation in differential Hahn fields.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 03, 2020. http://hdl.handle.net/2142/100890.

MLA Handbook (7th Edition):

Camacho Ahumada, Santiago. “Truncation in differential Hahn fields.” 2018. Web. 03 Jul 2020.

Vancouver:

Camacho Ahumada S. Truncation in differential Hahn fields. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/2142/100890.

Council of Science Editors:

Camacho Ahumada S. Truncation in differential Hahn fields. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/100890


McMaster University

5. Hong, Jizhan. Immediate expansions by valuation of fields.

Degree: PhD, 2013, McMaster University

The main subject of investigation is the so-called "immediate expansion'' phenomenon in various first-order valued-field structures over the corresponding underlying field structures. In particular,… (more)

Subjects/Keywords: valuation; definable; immediate expansions; separably closed valued fields; valued o-minimal fields; algebraically closed valued fields; intermediate structures; Algebra; Algebraic Geometry; Logic and Foundations; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hong, J. (2013). Immediate expansions by valuation of fields. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/13278

Chicago Manual of Style (16th Edition):

Hong, Jizhan. “Immediate expansions by valuation of fields.” 2013. Doctoral Dissertation, McMaster University. Accessed July 03, 2020. http://hdl.handle.net/11375/13278.

MLA Handbook (7th Edition):

Hong, Jizhan. “Immediate expansions by valuation of fields.” 2013. Web. 03 Jul 2020.

Vancouver:

Hong J. Immediate expansions by valuation of fields. [Internet] [Doctoral dissertation]. McMaster University; 2013. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/11375/13278.

Council of Science Editors:

Hong J. Immediate expansions by valuation of fields. [Doctoral Dissertation]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/13278


McMaster University

6. Miller-Sims, Laurel G. Definite Forms in Valued Fields.

Degree: PhD, 2009, McMaster University

Let K = (K, v, ... ) be a model of a model-complete theory, T of valued fields. We characterise, for certain definable subsets… (more)

Subjects/Keywords: valued; fields; subsets; henselian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miller-Sims, L. G. (2009). Definite Forms in Valued Fields. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/17335

Chicago Manual of Style (16th Edition):

Miller-Sims, Laurel G. “Definite Forms in Valued Fields.” 2009. Doctoral Dissertation, McMaster University. Accessed July 03, 2020. http://hdl.handle.net/11375/17335.

MLA Handbook (7th Edition):

Miller-Sims, Laurel G. “Definite Forms in Valued Fields.” 2009. Web. 03 Jul 2020.

Vancouver:

Miller-Sims LG. Definite Forms in Valued Fields. [Internet] [Doctoral dissertation]. McMaster University; 2009. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/11375/17335.

Council of Science Editors:

Miller-Sims LG. Definite Forms in Valued Fields. [Doctoral Dissertation]. McMaster University; 2009. Available from: http://hdl.handle.net/11375/17335


University of Manitoba

7. Barría Comicheo, Angel. On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank.

Degree: Mathematics, 2018, University of Manitoba

 Between 2013 and 2015 Aguayo et al. developed an operator theory on the space c0 of null sequences in the complex Levi-Civita field by defining… (more)

Subjects/Keywords: non-Archimedean Functional Analysis; Operator theory; Non-Archimedean valued fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barría Comicheo, A. (2018). On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank. (Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/33572

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Barría Comicheo, Angel. “On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank.” 2018. Thesis, University of Manitoba. Accessed July 03, 2020. http://hdl.handle.net/1993/33572.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Barría Comicheo, Angel. “On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank.” 2018. Web. 03 Jul 2020.

Vancouver:

Barría Comicheo A. On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank. [Internet] [Thesis]. University of Manitoba; 2018. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/1993/33572.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barría Comicheo A. On X-normed spaces and operator theory on c_0 over a field with a Krull valuation of arbitrary rank. [Thesis]. University of Manitoba; 2018. Available from: http://hdl.handle.net/1993/33572

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Hootman, Robert W. Set Function Integrals and Absolute Continuity.

Degree: 1971, North Texas State University

The purpose of this thesis is to investigate a theory of integration of real-valued functions defined on fields of sets. Advisors/Committee Members: Appling, William D. L., Dawson, David Fleming.

Subjects/Keywords: real-valued functions; fields of sets

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hootman, R. W. (1971). Set Function Integrals and Absolute Continuity. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc131369/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hootman, Robert W. “Set Function Integrals and Absolute Continuity.” 1971. Thesis, North Texas State University. Accessed July 03, 2020. https://digital.library.unt.edu/ark:/67531/metadc131369/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hootman, Robert W. “Set Function Integrals and Absolute Continuity.” 1971. Web. 03 Jul 2020.

Vancouver:

Hootman RW. Set Function Integrals and Absolute Continuity. [Internet] [Thesis]. North Texas State University; 1971. [cited 2020 Jul 03]. Available from: https://digital.library.unt.edu/ark:/67531/metadc131369/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hootman RW. Set Function Integrals and Absolute Continuity. [Thesis]. North Texas State University; 1971. Available from: https://digital.library.unt.edu/ark:/67531/metadc131369/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McGill University

9. Nassif, Nevine. Vector interpolation polynomials over finite elements.

Degree: PhD, Department of Electrical Engineering., 1984, McGill University

Vector interpolation functions which approximate electromagnetic vector fields are constructed in this thesis. These vector functions are to be used when the solution of Maxwell's… (more)

Subjects/Keywords: Vector valued functions.; Vector fields.; Finite element method.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nassif, N. (1984). Vector interpolation polynomials over finite elements. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile71972.pdf

Chicago Manual of Style (16th Edition):

Nassif, Nevine. “Vector interpolation polynomials over finite elements.” 1984. Doctoral Dissertation, McGill University. Accessed July 03, 2020. http://digitool.library.mcgill.ca/thesisfile71972.pdf.

MLA Handbook (7th Edition):

Nassif, Nevine. “Vector interpolation polynomials over finite elements.” 1984. Web. 03 Jul 2020.

Vancouver:

Nassif N. Vector interpolation polynomials over finite elements. [Internet] [Doctoral dissertation]. McGill University; 1984. [cited 2020 Jul 03]. Available from: http://digitool.library.mcgill.ca/thesisfile71972.pdf.

Council of Science Editors:

Nassif N. Vector interpolation polynomials over finite elements. [Doctoral Dissertation]. McGill University; 1984. Available from: http://digitool.library.mcgill.ca/thesisfile71972.pdf


Université Paris-Sud – Paris XI

10. Rideau, Silvain. Éliminations dans les corps valués : Eliminations in valued fields.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

Cette thèse est une contribution à la théorie des modèles des corps valués. Les principaux résultats de ce texte sont des résultats d’éliminations des quantificateurs… (more)

Subjects/Keywords: Théorie des modèles; Corps valués; Élimination des quantificateurs; Élimination des imaginaires; Model theory; Valued fields; Elimination of quantifiers; Elimination of imaginaries

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rideau, S. (2014). Éliminations dans les corps valués : Eliminations in valued fields. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112375

Chicago Manual of Style (16th Edition):

Rideau, Silvain. “Éliminations dans les corps valués : Eliminations in valued fields.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed July 03, 2020. http://www.theses.fr/2014PA112375.

MLA Handbook (7th Edition):

Rideau, Silvain. “Éliminations dans les corps valués : Eliminations in valued fields.” 2014. Web. 03 Jul 2020.

Vancouver:

Rideau S. Éliminations dans les corps valués : Eliminations in valued fields. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Jul 03]. Available from: http://www.theses.fr/2014PA112375.

Council of Science Editors:

Rideau S. Éliminations dans les corps valués : Eliminations in valued fields. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112375

11. Hakobyan, Tigran. Algebraically closed fields with characters; differential-henselian monotone valued differential fields.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 This thesis consists of two unrelated research projects. In the first project we study the model theory of the 2-sorted structure (F, C; χ), where… (more)

Subjects/Keywords: mathematical logic; model theory; quantifier elimination; NIP; fields; algebraically closed fields; characters; differential fields; valued fields; valued differential fields; d-henselian fields; monotone valued differential fields; Ax-Kochen-Ershov principle; Ax-Kochen principle

…Part I Algebraically Closed Fields with a Generic Multiplicative Character 2 Chapter… …1 Algebraically Closed Fields with a Generic Multiplicative Character Most of this… …Introduction Fields with characters occur in many places; see for example Kowalski [9] for… …model-theoretically tame pairs of fields with character maps between them. Throughout in this… …fields), and χ ∶ F → K satisfies χ(ab) = χ(a)χ(b) for all a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hakobyan, T. (2018). Algebraically closed fields with characters; differential-henselian monotone valued differential fields. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101483

Chicago Manual of Style (16th Edition):

Hakobyan, Tigran. “Algebraically closed fields with characters; differential-henselian monotone valued differential fields.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 03, 2020. http://hdl.handle.net/2142/101483.

MLA Handbook (7th Edition):

Hakobyan, Tigran. “Algebraically closed fields with characters; differential-henselian monotone valued differential fields.” 2018. Web. 03 Jul 2020.

Vancouver:

Hakobyan T. Algebraically closed fields with characters; differential-henselian monotone valued differential fields. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/2142/101483.

Council of Science Editors:

Hakobyan T. Algebraically closed fields with characters; differential-henselian monotone valued differential fields. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101483

12. XU TIANYI. SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY.

Degree: 2018, National University of Singapore

Subjects/Keywords: model theory; algebraic number theory; algebraic geometry; quantifier elimination; valued fields; transfer principle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

TIANYI, X. (2018). SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY. (Thesis). National University of Singapore. Retrieved from https://scholarbank.nus.edu.sg/handle/10635/154975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

TIANYI, XU. “SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY.” 2018. Thesis, National University of Singapore. Accessed July 03, 2020. https://scholarbank.nus.edu.sg/handle/10635/154975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

TIANYI, XU. “SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY.” 2018. Web. 03 Jul 2020.

Vancouver:

TIANYI X. SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY. [Internet] [Thesis]. National University of Singapore; 2018. [cited 2020 Jul 03]. Available from: https://scholarbank.nus.edu.sg/handle/10635/154975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

TIANYI X. SOME APPLICATIONS OF MODEL THEORY IN NUMBER THEORY. [Thesis]. National University of Singapore; 2018. Available from: https://scholarbank.nus.edu.sg/handle/10635/154975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Forey, Arthur. Invariants motiviques dans les corps valués : Motivic invariants in valued fields.

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

Cette thèse est consacrée à définir et étudier des invariants motiviques associés aux ensembles semi-algébriques dans les corps valués. Ceux-ci sont les combinaisons booléennes d'ensembles… (more)

Subjects/Keywords: Intégration motivique; Corps valués; Densité locale; Motifs rigides analytiques; Fibre de Milnor motivique; Cycles proches; Motivic integration; Valued fields; Motivic Milnor fiber; 512.6

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Forey, A. (2017). Invariants motiviques dans les corps valués : Motivic invariants in valued fields. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066557

Chicago Manual of Style (16th Edition):

Forey, Arthur. “Invariants motiviques dans les corps valués : Motivic invariants in valued fields.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed July 03, 2020. http://www.theses.fr/2017PA066557.

MLA Handbook (7th Edition):

Forey, Arthur. “Invariants motiviques dans les corps valués : Motivic invariants in valued fields.” 2017. Web. 03 Jul 2020.

Vancouver:

Forey A. Invariants motiviques dans les corps valués : Motivic invariants in valued fields. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2020 Jul 03]. Available from: http://www.theses.fr/2017PA066557.

Council of Science Editors:

Forey A. Invariants motiviques dans les corps valués : Motivic invariants in valued fields. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066557

14. Lehéricy, Gabriel. Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué.

Degree: Docteur es, Mathématiques. Logique mathématique, 2018, Sorbonne Paris Cité; Universität Konstanz

Cette thèse a pour objet les ordres, les valuations et les C-relations sur les groupes, ainsi que les corps différentiels valués tels qu’étudiés par Rosenlicht.… (more)

Subjects/Keywords: Ordres; Quasi-ordres; Valuations; C-groupes; Corps différentiels valués; Couples asymptotiques; C-minimalité; Orders; Quasi-orders; Valuations; C-groups; Differential-valued fields; Asymptotic couples; C-minimality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lehéricy, G. (2018). Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué. (Doctoral Dissertation). Sorbonne Paris Cité; Universität Konstanz. Retrieved from http://www.theses.fr/2018USPCC130

Chicago Manual of Style (16th Edition):

Lehéricy, Gabriel. “Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué.” 2018. Doctoral Dissertation, Sorbonne Paris Cité; Universität Konstanz. Accessed July 03, 2020. http://www.theses.fr/2018USPCC130.

MLA Handbook (7th Edition):

Lehéricy, Gabriel. “Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué.” 2018. Web. 03 Jul 2020.

Vancouver:

Lehéricy G. Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; Universität Konstanz; 2018. [cited 2020 Jul 03]. Available from: http://www.theses.fr/2018USPCC130.

Council of Science Editors:

Lehéricy G. Quasi-orders, C-groups, and the differentiel rank of a differential-valued field : Quasi-ordres, C-groupes, et rang différentiel d’un corps différentiel valué. [Doctoral Dissertation]. Sorbonne Paris Cité; Universität Konstanz; 2018. Available from: http://www.theses.fr/2018USPCC130

.