Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Urysohn)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

University of North Texas

1.
Shao, Chuang.
* Urysohn* ultrametric spaces and isometry groups.

Degree: 2009, University of North Texas

URL: https://digital.library.unt.edu/ark:/67531/metadc9918/

► In this dissertation we study a special sub-collection of Polish metric spaces: complete separable ultrametric spaces. Polish metric spaces have been studied for quite a…
(more)

Subjects/Keywords: Urysohn; ultrametric isometry group; universal; Metric spaces.; Isometrics (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shao, C. (2009). Urysohn ultrametric spaces and isometry groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc9918/

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shao, Chuang. “Urysohn ultrametric spaces and isometry groups.” 2009. Thesis, University of North Texas. Accessed August 14, 2020. https://digital.library.unt.edu/ark:/67531/metadc9918/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shao, Chuang. “Urysohn ultrametric spaces and isometry groups.” 2009. Web. 14 Aug 2020.

Vancouver:

Shao C. Urysohn ultrametric spaces and isometry groups. [Internet] [Thesis]. University of North Texas; 2009. [cited 2020 Aug 14]. Available from: https://digital.library.unt.edu/ark:/67531/metadc9918/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shao C. Urysohn ultrametric spaces and isometry groups. [Thesis]. University of North Texas; 2009. Available from: https://digital.library.unt.edu/ark:/67531/metadc9918/

Not specified: Masters Thesis or Doctoral Dissertation

2.
Drees, Kevin Michael.
<i>C_{p}</i>(<i>X</i>,Z).

Degree: PhD, Mathematics, 2009, Bowling Green State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243803693

► We examine the ring of continuous integer-valued continuous functions on a topological space X, denoted <i>C</i>(<i>X</i>,Z), endowed with the topology of pointwise convergence, denoted…
(more)

Subjects/Keywords: Mathematics; pointwise topology; rings of continuous functions; zero-dimensional; weight; character; metrizable space; Frechet-Urysohn space

…point
in time. It is know when Cp (X) is metrizable, a Fr´
echet-*Urysohn* space, a… …metrizable, is a
4
Fr´
echet-*Urysohn* space, when it is a sequential and when it is a k-space…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Drees, K. M. (2009). <i>C_{p}</i>(<i>X</i>,Z). (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243803693

Chicago Manual of Style (16^{th} Edition):

Drees, Kevin Michael. “<i>C_{p}</i>(<i>X</i>,Z).” 2009. Doctoral Dissertation, Bowling Green State University. Accessed August 14, 2020.
http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243803693.

MLA Handbook (7^{th} Edition):

Drees, Kevin Michael. “<i>C_{p}</i>(<i>X</i>,Z).” 2009. Web. 14 Aug 2020.

Vancouver:

Drees KM. <i>C_{p}</i>(<i>X</i>,Z). [Internet] [Doctoral dissertation]. Bowling Green State University; 2009. [cited 2020 Aug 14].
Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243803693.

Council of Science Editors:

Drees KM. <i>C_{p}</i>(<i>X</i>,Z). [Doctoral Dissertation]. Bowling Green State University; 2009. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243803693

3. Conant, Gabriel J. Model Theory and Combinatorics of Homogeneous Metric Spaces.

Degree: 2015, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/19725

► We develop the model theory of generalized metric spaces, in which distances between points are taken from arbitrary ordered additive structures. Our focus is on…
(more)

Subjects/Keywords: model theory; classification theory; generalized metric space; Urysohn space; stability; simplicity; strong order property; extending isometries

…independence property
RUS
R-*Urysohn* spaces, where R is a *Urysohn* monoid
SOP
strict order property… …graph, and the rational *Urysohn* space. These structures arise as motivational examples in many… …metric spaces,
denoted RUS (for “R-*Urysohn* spaces”). This class will include many… …the rational *Urysohn*
space), and we will show that, moreover, this class exhibits the… …particular, we consider generalizations of the rational
*Urysohn* space obtained by constructing a…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Conant, G. J. (2015). Model Theory and Combinatorics of Homogeneous Metric Spaces. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19725

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Conant, Gabriel J. “Model Theory and Combinatorics of Homogeneous Metric Spaces.” 2015. Thesis, University of Illinois – Chicago. Accessed August 14, 2020. http://hdl.handle.net/10027/19725.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Conant, Gabriel J. “Model Theory and Combinatorics of Homogeneous Metric Spaces.” 2015. Web. 14 Aug 2020.

Vancouver:

Conant GJ. Model Theory and Combinatorics of Homogeneous Metric Spaces. [Internet] [Thesis]. University of Illinois – Chicago; 2015. [cited 2020 Aug 14]. Available from: http://hdl.handle.net/10027/19725.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Conant GJ. Model Theory and Combinatorics of Homogeneous Metric Spaces. [Thesis]. University of Illinois – Chicago; 2015. Available from: http://hdl.handle.net/10027/19725

Not specified: Masters Thesis or Doctoral Dissertation

4. Slutskyy, Kostyantyn. Extending partial isomorphisms.

Degree: PhD, 0439, 2012, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/30971

► There are two main topics in the thesis. In the second chapter we study two-dimensional classes of topological similarity in the groups of automorphisms of…
(more)

Subjects/Keywords: Polish groups; Graev metrics; topological similarity; induced conjugacy classes; Urysohn space

…rationals with the usual ordering, and the rational *Urysohn* metric space.
Since the work of Fra… …ordered Rado graph, and the ordered rational *Urysohn* space.
The main tool in the proof of the… …results about the structure of the group
of isometries of the rational *Urysohn* space. For a… …*Urysohn*
space, and let U be the *Urysohn* space, which is the metric completion of QU.
J. Melleray… …R
if x, y ∈ B,
if x, y ∈ C,
otherwise.
Shortly before his death P. S. *Urysohn*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Slutskyy, K. (2012). Extending partial isomorphisms. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/30971

Chicago Manual of Style (16^{th} Edition):

Slutskyy, Kostyantyn. “Extending partial isomorphisms.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed August 14, 2020. http://hdl.handle.net/2142/30971.

MLA Handbook (7^{th} Edition):

Slutskyy, Kostyantyn. “Extending partial isomorphisms.” 2012. Web. 14 Aug 2020.

Vancouver:

Slutskyy K. Extending partial isomorphisms. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2020 Aug 14]. Available from: http://hdl.handle.net/2142/30971.

Council of Science Editors:

Slutskyy K. Extending partial isomorphisms. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/30971