Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Turing degrees)`

.
Showing records 1 – 5 of
5 total matches.

▼ Search Limiters

Victoria University of Wellington

1.
Arthur, Katie.
Maximality in the ⍺-C.A. * Degrees*.

Degree: 2016, Victoria University of Wellington

URL: http://hdl.handle.net/10063/5183

► In [4], Downey and Greenberg define the notion of totally ⍺-c.a. for appropriately small ordinals ⍺, and discuss the hierarchy this notion begets on the…
(more)

Subjects/Keywords: Computability; Priority arguments; Permitting; Turing degrees

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arthur, K. (2016). Maximality in the ⍺-C.A. Degrees. (Masters Thesis). Victoria University of Wellington. Retrieved from http://hdl.handle.net/10063/5183

Chicago Manual of Style (16^{th} Edition):

Arthur, Katie. “Maximality in the ⍺-C.A. Degrees.” 2016. Masters Thesis, Victoria University of Wellington. Accessed September 23, 2019. http://hdl.handle.net/10063/5183.

MLA Handbook (7^{th} Edition):

Arthur, Katie. “Maximality in the ⍺-C.A. Degrees.” 2016. Web. 23 Sep 2019.

Vancouver:

Arthur K. Maximality in the ⍺-C.A. Degrees. [Internet] [Masters thesis]. Victoria University of Wellington; 2016. [cited 2019 Sep 23]. Available from: http://hdl.handle.net/10063/5183.

Council of Science Editors:

Arthur K. Maximality in the ⍺-C.A. Degrees. [Masters Thesis]. Victoria University of Wellington; 2016. Available from: http://hdl.handle.net/10063/5183

Université Montpellier II

2. Givors, Fabien. Vers une structure fine des calculabilités : Towards a fine structure of computabilities.

Degree: Docteur es, Informatique, 2013, Université Montpellier II

URL: http://www.theses.fr/2013MON20160

►

La calculabilité est centrée autour de la notion de fonction calculable telle que définie par Church, Kleene, Rosser et *Turing* au siècle dernier. D'abord focalisée…
(more)

Subjects/Keywords: Degrés Turing; Calculabilité; Logique; Récursivité; Sous-Récursion; Turing degrees; Computability; Logic; Recursivity; Subrecursion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Givors, F. (2013). Vers une structure fine des calculabilités : Towards a fine structure of computabilities. (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2013MON20160

Chicago Manual of Style (16^{th} Edition):

Givors, Fabien. “Vers une structure fine des calculabilités : Towards a fine structure of computabilities.” 2013. Doctoral Dissertation, Université Montpellier II. Accessed September 23, 2019. http://www.theses.fr/2013MON20160.

MLA Handbook (7^{th} Edition):

Givors, Fabien. “Vers une structure fine des calculabilités : Towards a fine structure of computabilities.” 2013. Web. 23 Sep 2019.

Vancouver:

Givors F. Vers une structure fine des calculabilités : Towards a fine structure of computabilities. [Internet] [Doctoral dissertation]. Université Montpellier II; 2013. [cited 2019 Sep 23]. Available from: http://www.theses.fr/2013MON20160.

Council of Science Editors:

Givors F. Vers une structure fine des calculabilités : Towards a fine structure of computabilities. [Doctoral Dissertation]. Université Montpellier II; 2013. Available from: http://www.theses.fr/2013MON20160

Indiana University

3. Teutsch, Jason Richmond. Noncomputable Spectral Sets .

Degree: 2010, Indiana University

URL: http://hdl.handle.net/2022/7345

► It is a basic fact that, given a computer language and a computable integer function, there exists a shortest program in that language which computes…
(more)

Subjects/Keywords: computability theory; minimal indices; shortest programs; Godel numberings; Turing degrees; immunity; Kolmogorov complexity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Teutsch, J. R. (2010). Noncomputable Spectral Sets . (Thesis). Indiana University. Retrieved from http://hdl.handle.net/2022/7345

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Teutsch, Jason Richmond. “Noncomputable Spectral Sets .” 2010. Thesis, Indiana University. Accessed September 23, 2019. http://hdl.handle.net/2022/7345.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Teutsch, Jason Richmond. “Noncomputable Spectral Sets .” 2010. Web. 23 Sep 2019.

Vancouver:

Teutsch JR. Noncomputable Spectral Sets . [Internet] [Thesis]. Indiana University; 2010. [cited 2019 Sep 23]. Available from: http://hdl.handle.net/2022/7345.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Teutsch JR. Noncomputable Spectral Sets . [Thesis]. Indiana University; 2010. Available from: http://hdl.handle.net/2022/7345

Not specified: Masters Thesis or Doctoral Dissertation

4.
Basu, Sankha Subhra.
A Model of Intuitionism based on *Turing* * Degrees*.

Degree: PhD, Mathematics, 2013, Penn State University

URL: https://etda.libraries.psu.edu/catalog/19078

► Intuitionism is a constructive approach to mathematics introduced in the early part of the twetieth century by L. E. J. Brouwer and formalized by his…
(more)

Subjects/Keywords: intuitionism; higher-order logic; sheaf models; Turing degrees; mass problems; Muchnik degrees

…16].
1.4.2
Unsolvability of the Halting Problem and *Turing* *Degrees*
The question… …*Turing* reducibility to refer to the concept and introduced the name *Turing* *degrees* for *degrees*… …of unsolvability. It was also shown that the *Turing* *degrees* form an upper semi-lattice… …closed sets of *Turing* *degrees*, that is, the open sets in the poset
space of *Turing* *degrees*, is… …Constructive Recursive Mathematics and the Church-*Turing* thesis
Constructive recursive mathematics…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Basu, S. S. (2013). A Model of Intuitionism based on Turing Degrees. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/19078

Chicago Manual of Style (16^{th} Edition):

Basu, Sankha Subhra. “A Model of Intuitionism based on Turing Degrees.” 2013. Doctoral Dissertation, Penn State University. Accessed September 23, 2019. https://etda.libraries.psu.edu/catalog/19078.

MLA Handbook (7^{th} Edition):

Basu, Sankha Subhra. “A Model of Intuitionism based on Turing Degrees.” 2013. Web. 23 Sep 2019.

Vancouver:

Basu SS. A Model of Intuitionism based on Turing Degrees. [Internet] [Doctoral dissertation]. Penn State University; 2013. [cited 2019 Sep 23]. Available from: https://etda.libraries.psu.edu/catalog/19078.

Council of Science Editors:

Basu SS. A Model of Intuitionism based on Turing Degrees. [Doctoral Dissertation]. Penn State University; 2013. Available from: https://etda.libraries.psu.edu/catalog/19078

University of Florida

5. Paul Brodhead. Computable Aspects of Closed Sets.

Degree: PhD, Mathematics, 2008, University of Florida

URL: http://ufdc.ufl.edu/UFE0022003

► A closed set in 2^N may be viewed the set of infinite paths through a tree; a set A is computable if there is a…
(more)

Subjects/Keywords: Betting; Computability; Continuous functions; Degree of unsolvability; Martingales; Mathematical logic; Mathematical sets; Mathematics; Numberings; Randomness; bounded, bt, capping, classes, closed, computability, continuity, continuous, degrees, effectively, enumerations, numberings, pi01, randomness, turing, wtt

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brodhead, P. (2008). Computable Aspects of Closed Sets. (Doctoral Dissertation). University of Florida. Retrieved from http://ufdc.ufl.edu/UFE0022003

Chicago Manual of Style (16^{th} Edition):

Brodhead, Paul. “Computable Aspects of Closed Sets.” 2008. Doctoral Dissertation, University of Florida. Accessed September 23, 2019. http://ufdc.ufl.edu/UFE0022003.

MLA Handbook (7^{th} Edition):

Brodhead, Paul. “Computable Aspects of Closed Sets.” 2008. Web. 23 Sep 2019.

Vancouver:

Brodhead P. Computable Aspects of Closed Sets. [Internet] [Doctoral dissertation]. University of Florida; 2008. [cited 2019 Sep 23]. Available from: http://ufdc.ufl.edu/UFE0022003.

Council of Science Editors:

Brodhead P. Computable Aspects of Closed Sets. [Doctoral Dissertation]. University of Florida; 2008. Available from: http://ufdc.ufl.edu/UFE0022003