Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Transport optimal). Showing records 1 – 30 of 90 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Degrees

Languages

Country

▼ Search Limiters

1. Dweik, Samer. Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities.

Degree: Docteur es, Mathématiques fondamentales, 2018, Paris Saclay

 Une première partie de cette thèse est dédiée à l’étude de la régularité de la densité de transport sigma dans le problème de Monge entre… (more)

Subjects/Keywords: Transport optimal; Contrôle optimal; MFG; Optimal transport; Optimal control; MFG

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dweik, S. (2018). Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2018SACLS150

Chicago Manual of Style (16th Edition):

Dweik, Samer. “Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities.” 2018. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2018SACLS150.

MLA Handbook (7th Edition):

Dweik, Samer. “Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities.” 2018. Web. 23 Jul 2019.

Vancouver:

Dweik S. Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities. [Internet] [Doctoral dissertation]. Paris Saclay; 2018. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2018SACLS150.

Council of Science Editors:

Dweik S. Problèmes de transport et de contrôle avec coûts sur le bord : régularité et sommabilité des densités optimales et d'équilibre : Transport and control problems with boundary costs : regularity and summability of optimal and equilibrium densities. [Doctoral Dissertation]. Paris Saclay; 2018. Available from: http://www.theses.fr/2018SACLS150


University of Lethbridge

2. University of Lethbridge, Faculty of Arts and Science. Optimal Paths Related to Discrete Transport Problems .

Degree: 2015, University of Lethbridge

 The transport problem proposed by Monge in the 1780's, was to find the best way to move a pile of soil or rubble to an… (more)

Subjects/Keywords: Radon measure; optimal transport path

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

University of Lethbridge, F. o. A. a. S. (2015). Optimal Paths Related to Discrete Transport Problems . (Thesis). University of Lethbridge. Retrieved from http://hdl.handle.net/10133/4413

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

University of Lethbridge, Faculty of Arts and Science. “Optimal Paths Related to Discrete Transport Problems .” 2015. Thesis, University of Lethbridge. Accessed July 23, 2019. http://hdl.handle.net/10133/4413.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

University of Lethbridge, Faculty of Arts and Science. “Optimal Paths Related to Discrete Transport Problems .” 2015. Web. 23 Jul 2019.

Vancouver:

University of Lethbridge FoAaS. Optimal Paths Related to Discrete Transport Problems . [Internet] [Thesis]. University of Lethbridge; 2015. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10133/4413.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

University of Lethbridge FoAaS. Optimal Paths Related to Discrete Transport Problems . [Thesis]. University of Lethbridge; 2015. Available from: http://hdl.handle.net/10133/4413

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

3. Wu, Jianqiu. Smooth minimal transport networks and non-orientable minimal surfaces in S3.

Degree: PhD, Natural Sciences, 2019, Rice University

 In this paper we introduce a new optimal transport problem which involves roughly a finite system of simultaneous time-parametrized transport which favors merging paths for… (more)

Subjects/Keywords: optimal transport; minimal surface

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, J. (2019). Smooth minimal transport networks and non-orientable minimal surfaces in S3. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105958

Chicago Manual of Style (16th Edition):

Wu, Jianqiu. “Smooth minimal transport networks and non-orientable minimal surfaces in S3.” 2019. Doctoral Dissertation, Rice University. Accessed July 23, 2019. http://hdl.handle.net/1911/105958.

MLA Handbook (7th Edition):

Wu, Jianqiu. “Smooth minimal transport networks and non-orientable minimal surfaces in S3.” 2019. Web. 23 Jul 2019.

Vancouver:

Wu J. Smooth minimal transport networks and non-orientable minimal surfaces in S3. [Internet] [Doctoral dissertation]. Rice University; 2019. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1911/105958.

Council of Science Editors:

Wu J. Smooth minimal transport networks and non-orientable minimal surfaces in S3. [Doctoral Dissertation]. Rice University; 2019. Available from: http://hdl.handle.net/1911/105958


Penn State University

4. Ye, Jianbo. Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models.

Degree: 2018, Penn State University

 Quantitative researchers often view our world as a large collection of data generated and organized by the structures and functions of society and technology. Those… (more)

Subjects/Keywords: machine learning; optimal transport; optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ye, J. (2018). Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models. (Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/15191jxy198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ye, Jianbo. “Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models.” 2018. Thesis, Penn State University. Accessed July 23, 2019. https://etda.libraries.psu.edu/catalog/15191jxy198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ye, Jianbo. “Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models.” 2018. Web. 23 Jul 2019.

Vancouver:

Ye J. Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models. [Internet] [Thesis]. Penn State University; 2018. [cited 2019 Jul 23]. Available from: https://etda.libraries.psu.edu/catalog/15191jxy198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ye J. Computational Modeling of Compositional and Relational Data Using Optimal Transport and Probabilistic Models. [Thesis]. Penn State University; 2018. Available from: https://etda.libraries.psu.edu/catalog/15191jxy198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Minnesota

5. Chen, Yongxin. Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport.

Degree: PhD, Mechanical Engineering, 2016, University of Minnesota

 We study modeling and control of collective dynamics. More specifically, we consider the problem of steering a particle system from an initial distribution to a… (more)

Subjects/Keywords: control theory; optimal mass transport; Schroedinger bridge

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, Y. (2016). Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182235

Chicago Manual of Style (16th Edition):

Chen, Yongxin. “Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport.” 2016. Doctoral Dissertation, University of Minnesota. Accessed July 23, 2019. http://hdl.handle.net/11299/182235.

MLA Handbook (7th Edition):

Chen, Yongxin. “Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport.” 2016. Web. 23 Jul 2019.

Vancouver:

Chen Y. Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/11299/182235.

Council of Science Editors:

Chen Y. Modeling and control of collective dynamics: From Schroedinger bridges to optimal mass transport. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182235

6. Hug, Romain. Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints.

Degree: Docteur es, Mathématiques Appliquées, 2016, Grenoble Alpes

Au début des années 2000, J. D. Benamou et Y. Brenier ont proposé une formulation dynamique du transport optimal basée sur la recherche en espace-temps… (more)

Subjects/Keywords: Transport optimal; Algorithme de Benamou-Brenier; Contraintes; Optimal transport; Benamou-Brenier algorithm; Constraints; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hug, R. (2016). Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2016GREAM077

Chicago Manual of Style (16th Edition):

Hug, Romain. “Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints.” 2016. Doctoral Dissertation, Grenoble Alpes. Accessed July 23, 2019. http://www.theses.fr/2016GREAM077.

MLA Handbook (7th Edition):

Hug, Romain. “Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints.” 2016. Web. 23 Jul 2019.

Vancouver:

Hug R. Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016GREAM077.

Council of Science Editors:

Hug R. Analyse mathématique et convergence d'un algorithme pour le transport optimal dynamique : cas des plans de transports non réguliers, ou soumis à des contraintes : Mathematical analysis and convergence of an algorithm for optimal transport problem : case of non regular transportation maps, or subjected to constraints. [Doctoral Dissertation]. Grenoble Alpes; 2016. Available from: http://www.theses.fr/2016GREAM077


Université Paris-Sud – Paris XI

7. Lepoultier, Guilhem. Transport numérique de quantités géométriques : Numerical transport of geometrics quantities.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

Une part importante de l’activité en calcul scientifique et analyse numérique est consacrée aux problèmes de transport d’une quantité par un champ donné (ou lui-même… (more)

Subjects/Keywords: Équations de transport; Méthodes particulaires; Transport optimal; Distance de Fisher; Transport equations; Particle methods; Optimal transportation; Fisher metric

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lepoultier, G. (2014). Transport numérique de quantités géométriques : Numerical transport of geometrics quantities. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112202

Chicago Manual of Style (16th Edition):

Lepoultier, Guilhem. “Transport numérique de quantités géométriques : Numerical transport of geometrics quantities.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed July 23, 2019. http://www.theses.fr/2014PA112202.

MLA Handbook (7th Edition):

Lepoultier, Guilhem. “Transport numérique de quantités géométriques : Numerical transport of geometrics quantities.” 2014. Web. 23 Jul 2019.

Vancouver:

Lepoultier G. Transport numérique de quantités géométriques : Numerical transport of geometrics quantities. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2014PA112202.

Council of Science Editors:

Lepoultier G. Transport numérique de quantités géométriques : Numerical transport of geometrics quantities. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112202

8. Nguyen, Van thanh. Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems.

Degree: Docteur es, Mathematiques et applications, 2017, Limoges

Cette thèse est consacrée à l'analyse mathématique et numérique pour les problèmes de transport partiel optimal et d'appariement avec contrainte (constrained matching problem). Ces deux… (more)

Subjects/Keywords: Transport optimal; Transport partiel optimal; Problème d'appariement optimal; Dualité de Fenchel – Rockafellar; Équation de Monge – Kantorovich; Doublant des variables; Méthodes du lagrangien augmenté; Optimal transport; Optimal partial transport; Optimal matching; Fenchel – Rockafellar duality; Monge – Kantorovich equation; Doubling variables; Augmented lagrangian methods; 519.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, V. t. (2017). Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems. (Doctoral Dissertation). Limoges. Retrieved from http://www.theses.fr/2017LIMO0052

Chicago Manual of Style (16th Edition):

Nguyen, Van thanh. “Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems.” 2017. Doctoral Dissertation, Limoges. Accessed July 23, 2019. http://www.theses.fr/2017LIMO0052.

MLA Handbook (7th Edition):

Nguyen, Van thanh. “Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems.” 2017. Web. 23 Jul 2019.

Vancouver:

Nguyen Vt. Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems. [Internet] [Doctoral dissertation]. Limoges; 2017. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2017LIMO0052.

Council of Science Editors:

Nguyen Vt. Problèmes de transport partiel optimal et d'appariement avec contrainte : Optimal partial transport and constrained matching problems. [Doctoral Dissertation]. Limoges; 2017. Available from: http://www.theses.fr/2017LIMO0052


Georgia Tech

9. Li, Wuchen. A study of stochastic differential equations and Fokker-Planck equations with applications.

Degree: PhD, Mathematics, 2016, Georgia Tech

 Fokker-Planck equations, along with stochastic differential equations, play vital roles in physics, population modeling, game theory and optimization (finite or infinite dimensional). In this thesis,… (more)

Subjects/Keywords: Stochastic differential equations; Fokker-Planck equations; Gradient flow; Optimal control; Optimal transport

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, W. (2016). A study of stochastic differential equations and Fokker-Planck equations with applications. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/54999

Chicago Manual of Style (16th Edition):

Li, Wuchen. “A study of stochastic differential equations and Fokker-Planck equations with applications.” 2016. Doctoral Dissertation, Georgia Tech. Accessed July 23, 2019. http://hdl.handle.net/1853/54999.

MLA Handbook (7th Edition):

Li, Wuchen. “A study of stochastic differential equations and Fokker-Planck equations with applications.” 2016. Web. 23 Jul 2019.

Vancouver:

Li W. A study of stochastic differential equations and Fokker-Planck equations with applications. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1853/54999.

Council of Science Editors:

Li W. A study of stochastic differential equations and Fokker-Planck equations with applications. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/54999

10. Mandad, Manish. Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces.

Degree: Docteur es, Informatique, 2016, Côte d'Azur

Cette thèse comprend deux parties indépendantes.Dans la première partie nous contribuons une nouvelle méthode qui, étant donnée un volume de tolérance, génère un maillage triangulaire… (more)

Subjects/Keywords: Robustesse; Approximation; Reconstruction; Simplification; Cartographie; Transport optimal; Robustness; Approximation; Reconstruction; Simplification; Mapping; Optimal transportation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mandad, M. (2016). Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces. (Doctoral Dissertation). Côte d'Azur. Retrieved from http://www.theses.fr/2016AZUR4156

Chicago Manual of Style (16th Edition):

Mandad, Manish. “Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces.” 2016. Doctoral Dissertation, Côte d'Azur. Accessed July 23, 2019. http://www.theses.fr/2016AZUR4156.

MLA Handbook (7th Edition):

Mandad, Manish. “Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces.” 2016. Web. 23 Jul 2019.

Vancouver:

Mandad M. Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces. [Internet] [Doctoral dissertation]. Côte d'Azur; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016AZUR4156.

Council of Science Editors:

Mandad M. Approximation robuste de surfaces avec garanties : Robust shape approximation and mapping between surfaces. [Doctoral Dissertation]. Côte d'Azur; 2016. Available from: http://www.theses.fr/2016AZUR4156

11. André, Julien. Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric.

Degree: Docteur es, Signal, image, paroles, télécoms, 2015, Grenoble Alpes

Dans cette thèse, nous étudions le problème du réflecteur. Etant données une source lumineuse et une cible à éclairer avec une certaine distribution d'intensité, il… (more)

Subjects/Keywords: Modélisation de surfaces; Photométrie; Optique; Réflecteur; Géométrie algorithmique; Transport optimal; Surface modeling; Photometry; Optic; Reflector; Computational geometry; Optimal transport; 620

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

André, J. (2015). Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2015GREAT016

Chicago Manual of Style (16th Edition):

André, Julien. “Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric.” 2015. Doctoral Dissertation, Grenoble Alpes. Accessed July 23, 2019. http://www.theses.fr/2015GREAT016.

MLA Handbook (7th Edition):

André, Julien. “Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric.” 2015. Web. 23 Jul 2019.

Vancouver:

André J. Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2015. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2015GREAT016.

Council of Science Editors:

André J. Conception de réflecteurs pour des applications photométriques : Geometric modeling of surfaces for applications photometric. [Doctoral Dissertation]. Grenoble Alpes; 2015. Available from: http://www.theses.fr/2015GREAT016

12. Henry, Morgane. Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image.

Degree: Docteur es, Mathématiques Appliquées, 2016, Grenoble Alpes

Le transport optimal trouve un nombre grandissant d’applications, dont celle qui nous intéresse dans ce travail, l'interpolation d’images. Malgré cet essor, la résolution numérique de… (more)

Subjects/Keywords: Transport optimal; Ondelettes; Calcul des variations; Traitement d'images; Optimal transport; Wavelets; Calculus of variations; Image processing; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Henry, M. (2016). Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2016GREAM026

Chicago Manual of Style (16th Edition):

Henry, Morgane. “Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image.” 2016. Doctoral Dissertation, Grenoble Alpes. Accessed July 23, 2019. http://www.theses.fr/2016GREAM026.

MLA Handbook (7th Edition):

Henry, Morgane. “Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image.” 2016. Web. 23 Jul 2019.

Vancouver:

Henry M. Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016GREAM026.

Council of Science Editors:

Henry M. Transport optimal et ondelettes : nouveaux algorithmes et applications à l'image : Optimal transportation and wavelets : new algorithms and application to image. [Doctoral Dissertation]. Grenoble Alpes; 2016. Available from: http://www.theses.fr/2016GREAM026


Université Paris-Sud – Paris XI

13. Roudneff, Aude. Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

Nous étudions dans ce travail les mouvements de foule intervenant dans les situa- tions d’urgence. Nous proposons un modèle macroscopique (la foule est représentée par… (more)

Subjects/Keywords: Mouvements de foule; Transport optimal; Flot-gradient; Schéma de catching-up; Crowd motion; Optimal transport; Gradient flow; Catching-up scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roudneff, A. (2011). Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112304

Chicago Manual of Style (16th Edition):

Roudneff, Aude. “Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed July 23, 2019. http://www.theses.fr/2011PA112304.

MLA Handbook (7th Edition):

Roudneff, Aude. “Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion.” 2011. Web. 23 Jul 2019.

Vancouver:

Roudneff A. Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2011PA112304.

Council of Science Editors:

Roudneff A. Modelisation macroscopique de mouvements de foule : Macroscopic modelling of crowd motion. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112304

14. Meyron, Jocelyn. Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics.

Degree: Docteur es, Signal image parole telecoms, 2018, Grenoble Alpes

Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont… (more)

Subjects/Keywords: Géométrie algorithmique; Conception de surfaces; Transport optimal; Problème du réflecteur; Computational geometry; Surface design; Optimal transport; Reflector problem; 510; 620

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meyron, J. (2018). Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2018GREAT104

Chicago Manual of Style (16th Edition):

Meyron, Jocelyn. “Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics.” 2018. Doctoral Dissertation, Grenoble Alpes. Accessed July 23, 2019. http://www.theses.fr/2018GREAT104.

MLA Handbook (7th Edition):

Meyron, Jocelyn. “Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics.” 2018. Web. 23 Jul 2019.

Vancouver:

Meyron J. Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2018. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2018GREAT104.

Council of Science Editors:

Meyron J. Transport optimal semi-discret et applications en optique anidolique : Semi-discrete optimal transport and applications in non-imaging optics. [Doctoral Dissertation]. Grenoble Alpes; 2018. Available from: http://www.theses.fr/2018GREAT104

15. De march, Hadrien. Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport.

Degree: Docteur es, Mathématiques appliquées, 2018, Paris Saclay

Nous étudions dans cette thèse divers aspects du transport optimal martingale en dimension plus grande que un, de la dualité à la structure locale, puis… (more)

Subjects/Keywords: Finance robuste; Transport optimal; Martingale; Dualité; Structure locale; Numérique; Robust finance; Optimal transport; Martingale; Duality; Local structure; Numerics; 519.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

De march, H. (2018). Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2018SACLX042

Chicago Manual of Style (16th Edition):

De march, Hadrien. “Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport.” 2018. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2018SACLX042.

MLA Handbook (7th Edition):

De march, Hadrien. “Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport.” 2018. Web. 23 Jul 2019.

Vancouver:

De march H. Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport. [Internet] [Doctoral dissertation]. Paris Saclay; 2018. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2018SACLX042.

Council of Science Editors:

De march H. Transport optimal de martingale multidimensionnel. : Multidimensional martingale optimal transport. [Doctoral Dissertation]. Paris Saclay; 2018. Available from: http://www.theses.fr/2018SACLX042

16. Duan, Xianglong. Optimal transport and diffusion of currents : Transport optimal et diffusions de courants.

Degree: Docteur es, Mathématiques fondamentales, 2017, Paris Saclay

 Les travaux portent sur l'étude d'équations aux dérivées partielles à la charnière de la physique de la mécanique des milieux continus et de la géométrie… (more)

Subjects/Keywords: Transport optimal; Diffusions de courants; Équations aux dérivées partielles; Optimal transport; Diffusion of currents; Partial differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duan, X. (2017). Optimal transport and diffusion of currents : Transport optimal et diffusions de courants. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2017SACLX054

Chicago Manual of Style (16th Edition):

Duan, Xianglong. “Optimal transport and diffusion of currents : Transport optimal et diffusions de courants.” 2017. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2017SACLX054.

MLA Handbook (7th Edition):

Duan, Xianglong. “Optimal transport and diffusion of currents : Transport optimal et diffusions de courants.” 2017. Web. 23 Jul 2019.

Vancouver:

Duan X. Optimal transport and diffusion of currents : Transport optimal et diffusions de courants. [Internet] [Doctoral dissertation]. Paris Saclay; 2017. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2017SACLX054.

Council of Science Editors:

Duan X. Optimal transport and diffusion of currents : Transport optimal et diffusions de courants. [Doctoral Dissertation]. Paris Saclay; 2017. Available from: http://www.theses.fr/2017SACLX054

17. Pegon, Paul. Transport branché et structures fractales : Branched transport and fractal structures.

Degree: Docteur es, Mathématiques appliquées, 2017, Paris Saclay

Cette thèse est consacrée à l’étude du transport branché, de problèmes variationnels qui y sont liés et de structures fractales qui peuvent y apparaître. Le… (more)

Subjects/Keywords: Transport branché; Fractales; Transport optimal; Calcul des variations; Théorie géométrique de la mesure; Branched transport; Fractals; Optimal transport; Calcul of variations; Geometric measure theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pegon, P. (2017). Transport branché et structures fractales : Branched transport and fractal structures. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2017SACLS444

Chicago Manual of Style (16th Edition):

Pegon, Paul. “Transport branché et structures fractales : Branched transport and fractal structures.” 2017. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2017SACLS444.

MLA Handbook (7th Edition):

Pegon, Paul. “Transport branché et structures fractales : Branched transport and fractal structures.” 2017. Web. 23 Jul 2019.

Vancouver:

Pegon P. Transport branché et structures fractales : Branched transport and fractal structures. [Internet] [Doctoral dissertation]. Paris Saclay; 2017. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2017SACLS444.

Council of Science Editors:

Pegon P. Transport branché et structures fractales : Branched transport and fractal structures. [Doctoral Dissertation]. Paris Saclay; 2017. Available from: http://www.theses.fr/2017SACLS444


Penn State University

18. Kudlik, D'anne Elyse. A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature.

Degree: MS, Bioengineering, 2015, Penn State University

 Cerebral vasculature develops as a hierarchical branching network. Though the topology remains consistent throughout the population, the exact branching geometry is unique to the individual.… (more)

Subjects/Keywords: transport network; blood flow; optimal transport network; blood flow modeling; cerebral vasculature; pial vasculature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kudlik, D. E. (2015). A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature. (Masters Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/24920

Chicago Manual of Style (16th Edition):

Kudlik, D'anne Elyse. “A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature.” 2015. Masters Thesis, Penn State University. Accessed July 23, 2019. https://etda.libraries.psu.edu/catalog/24920.

MLA Handbook (7th Edition):

Kudlik, D'anne Elyse. “A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature.” 2015. Web. 23 Jul 2019.

Vancouver:

Kudlik DE. A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature. [Internet] [Masters thesis]. Penn State University; 2015. [cited 2019 Jul 23]. Available from: https://etda.libraries.psu.edu/catalog/24920.

Council of Science Editors:

Kudlik DE. A quantitative comparison of the constant shear stress model and the optimal transport network model in cerebral vasculature. [Masters Thesis]. Penn State University; 2015. Available from: https://etda.libraries.psu.edu/catalog/24920


Texas A&M University

19. Halder, Abhishek. Probabilistic Methods for Model Validation.

Degree: 2014, Texas A&M University

 This dissertation develops a probabilistic method for validation and verification (V&V) of uncertain nonlinear systems. Existing systems-control literature on model and controller V&V either deal… (more)

Subjects/Keywords: model validation; controller verification; refinement; optimal transport; Wasserstein distance; uncertainty propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Halder, A. (2014). Probabilistic Methods for Model Validation. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/152677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Halder, Abhishek. “Probabilistic Methods for Model Validation.” 2014. Thesis, Texas A&M University. Accessed July 23, 2019. http://hdl.handle.net/1969.1/152677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Halder, Abhishek. “Probabilistic Methods for Model Validation.” 2014. Web. 23 Jul 2019.

Vancouver:

Halder A. Probabilistic Methods for Model Validation. [Internet] [Thesis]. Texas A&M University; 2014. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1969.1/152677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Halder A. Probabilistic Methods for Model Validation. [Thesis]. Texas A&M University; 2014. Available from: http://hdl.handle.net/1969.1/152677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Victoria

20. Thompson, William. Analysis of a mollified kinetic equation for granular media.

Degree: Department of Mathematics and Statistics, 2016, University of Victoria

 We study a nonlinear kinetic model describing the interactions of particles in a granular medium, i.e. inelastic systems where kinetic energy is not conserved due… (more)

Subjects/Keywords: Functional Analysis; Optimal Transport; Kinetic Equations; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thompson, W. (2016). Analysis of a mollified kinetic equation for granular media. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/7438

Chicago Manual of Style (16th Edition):

Thompson, William. “Analysis of a mollified kinetic equation for granular media.” 2016. Masters Thesis, University of Victoria. Accessed July 23, 2019. http://hdl.handle.net/1828/7438.

MLA Handbook (7th Edition):

Thompson, William. “Analysis of a mollified kinetic equation for granular media.” 2016. Web. 23 Jul 2019.

Vancouver:

Thompson W. Analysis of a mollified kinetic equation for granular media. [Internet] [Masters thesis]. University of Victoria; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1828/7438.

Council of Science Editors:

Thompson W. Analysis of a mollified kinetic equation for granular media. [Masters Thesis]. University of Victoria; 2016. Available from: http://hdl.handle.net/1828/7438


King Abdullah University of Science and Technology

21. Seneci, Tommaso. Displacement Convexity for First-Order Mean-Field Games.

Degree: 2018, King Abdullah University of Science and Technology

 In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between… (more)

Subjects/Keywords: analysis of PDE; Mean-field games; Optimal transport; apriori bounds; convexity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Seneci, T. (2018). Displacement Convexity for First-Order Mean-Field Games. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/627746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Seneci, Tommaso. “Displacement Convexity for First-Order Mean-Field Games.” 2018. Thesis, King Abdullah University of Science and Technology. Accessed July 23, 2019. http://hdl.handle.net/10754/627746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Seneci, Tommaso. “Displacement Convexity for First-Order Mean-Field Games.” 2018. Web. 23 Jul 2019.

Vancouver:

Seneci T. Displacement Convexity for First-Order Mean-Field Games. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2018. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10754/627746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Seneci T. Displacement Convexity for First-Order Mean-Field Games. [Thesis]. King Abdullah University of Science and Technology; 2018. Available from: http://hdl.handle.net/10754/627746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

22. -7238-7978. Optimal transport for seismic inverse problems.

Degree: Mathematics, 2018, University of Texas – Austin

 Seismic data contains interpretable information about subsurface properties, which are important for exploration geophysics. Full waveform inversion (FWI) is a nonlinear inverse technique that inverts… (more)

Subjects/Keywords: Numerical analysis; Optimal transport; Full-waveform inversion; Seismic imaging; Optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-7238-7978. (2018). Optimal transport for seismic inverse problems. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/65848

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-7238-7978. “Optimal transport for seismic inverse problems.” 2018. Thesis, University of Texas – Austin. Accessed July 23, 2019. http://hdl.handle.net/2152/65848.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-7238-7978. “Optimal transport for seismic inverse problems.” 2018. Web. 23 Jul 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-7238-7978. Optimal transport for seismic inverse problems. [Internet] [Thesis]. University of Texas – Austin; 2018. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/2152/65848.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-7238-7978. Optimal transport for seismic inverse problems. [Thesis]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/65848

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


Georgia Tech

23. Gao, Rui. Distributionally robust stochastic optimization with applications in statistical learning.

Degree: PhD, Industrial and Systems Engineering, 2018, Georgia Tech

 In this thesis, we study distributionally robust stochastic optimization (DRSO), a recent emerging framework for solving decision-making under uncertainty. In this framework, instead of assuming… (more)

Subjects/Keywords: Distributionally robust optimization; Wasserstein distance; Optimal transport; Regularization; Copula

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, R. (2018). Distributionally robust stochastic optimization with applications in statistical learning. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/59834

Chicago Manual of Style (16th Edition):

Gao, Rui. “Distributionally robust stochastic optimization with applications in statistical learning.” 2018. Doctoral Dissertation, Georgia Tech. Accessed July 23, 2019. http://hdl.handle.net/1853/59834.

MLA Handbook (7th Edition):

Gao, Rui. “Distributionally robust stochastic optimization with applications in statistical learning.” 2018. Web. 23 Jul 2019.

Vancouver:

Gao R. Distributionally robust stochastic optimization with applications in statistical learning. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1853/59834.

Council of Science Editors:

Gao R. Distributionally robust stochastic optimization with applications in statistical learning. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/59834

24. Lu, Ying. Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -.

Degree: Docteur es, Informatique et Mathématiques, 2017, Lyon

 Lors de l’apprentissage d’un modèle de classification pour un nouveau domaine cible avec seulement une petite quantité d’échantillons de formation, l’application des algorithmes d’apprentissage automatiques… (more)

Subjects/Keywords: Transfert d'apprentissage; Inductive Transfer Learning; Sparse Representation; Optimal Transport; Computer Vision

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lu, Y. (2017). Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2017LYSEC045

Chicago Manual of Style (16th Edition):

Lu, Ying. “Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -.” 2017. Doctoral Dissertation, Lyon. Accessed July 23, 2019. http://www.theses.fr/2017LYSEC045.

MLA Handbook (7th Edition):

Lu, Ying. “Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -.” 2017. Web. 23 Jul 2019.

Vancouver:

Lu Y. Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -. [Internet] [Doctoral dissertation]. Lyon; 2017. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2017LYSEC045.

Council of Science Editors:

Lu Y. Transfer Learning for Image Classification : Transfert de connaissances pour la classification des images -. [Doctoral Dissertation]. Lyon; 2017. Available from: http://www.theses.fr/2017LYSEC045


UCLA

25. Puthawala, Michael Anthony. The Structure of Inverse Problems and Unnormalized Optimal Transport.

Degree: Mathematics, 2019, UCLA

 In this thesis we consider the solution of inverse problems, especially the components of a numerical inversion, and detection of forward operator error by the… (more)

Subjects/Keywords: Applied mathematics; Imaging; Inverse Problems; Operator Calibration; Operator Error; Optimal Transport

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Puthawala, M. A. (2019). The Structure of Inverse Problems and Unnormalized Optimal Transport. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/16s0m70x

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Puthawala, Michael Anthony. “The Structure of Inverse Problems and Unnormalized Optimal Transport.” 2019. Thesis, UCLA. Accessed July 23, 2019. http://www.escholarship.org/uc/item/16s0m70x.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Puthawala, Michael Anthony. “The Structure of Inverse Problems and Unnormalized Optimal Transport.” 2019. Web. 23 Jul 2019.

Vancouver:

Puthawala MA. The Structure of Inverse Problems and Unnormalized Optimal Transport. [Internet] [Thesis]. UCLA; 2019. [cited 2019 Jul 23]. Available from: http://www.escholarship.org/uc/item/16s0m70x.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Puthawala MA. The Structure of Inverse Problems and Unnormalized Optimal Transport. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/16s0m70x

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

26. Downes, Carol Ann. A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks.

Degree: PhD, Natural Sciences, 2017, Rice University

 An oriented transportation network can be modeled by a 1-dimensional chain whose boundary is the difference between the demand and supply distributions, represented by weighted… (more)

Subjects/Keywords: Geometric Measure Theory; Geometric Flows; Optimal Transport Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Downes, C. A. (2017). A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96173

Chicago Manual of Style (16th Edition):

Downes, Carol Ann. “A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks.” 2017. Doctoral Dissertation, Rice University. Accessed July 23, 2019. http://hdl.handle.net/1911/96173.

MLA Handbook (7th Edition):

Downes, Carol Ann. “A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks.” 2017. Web. 23 Jul 2019.

Vancouver:

Downes CA. A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1911/96173.

Council of Science Editors:

Downes CA. A Mass Minimizing Flow for Real-Valued Flat Chains with Applications to Transport Networks. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96173


University of Southern California

27. Magruder, Kelly Christopher. Optimal electronic device design.

Degree: PhD, Electrical Engineering, 2011, University of Southern California

 A physical model of electron transport through nanoscale semiconductor heterostructures is developed featuring self-consistent solution of the Schroedinger and Poisson equations for the potential. Using… (more)

Subjects/Keywords: heterostructure diode; optimal design; electron-phonon interaction; inelastic scattering; electron transport

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magruder, K. C. (2011). Optimal electronic device design. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/159108/rec/4598

Chicago Manual of Style (16th Edition):

Magruder, Kelly Christopher. “Optimal electronic device design.” 2011. Doctoral Dissertation, University of Southern California. Accessed July 23, 2019. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/159108/rec/4598.

MLA Handbook (7th Edition):

Magruder, Kelly Christopher. “Optimal electronic device design.” 2011. Web. 23 Jul 2019.

Vancouver:

Magruder KC. Optimal electronic device design. [Internet] [Doctoral dissertation]. University of Southern California; 2011. [cited 2019 Jul 23]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/159108/rec/4598.

Council of Science Editors:

Magruder KC. Optimal electronic device design. [Doctoral Dissertation]. University of Southern California; 2011. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/159108/rec/4598

28. Guo, Gaoyue. Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal.

Degree: Docteur es, Mathématiques appliquées - Polytechnique, 2016, Paris Saclay

Cette thèse présente trois principaux sujets de recherche, les deux premiers étant indépendants et le dernier indiquant la relation des deux premières problématiques dans un… (more)

Subjects/Keywords: Transport optimal martingale; Plongement de Skorokhod optimal; Dualité; Principe de monotonie; Stabilité; Solution de Vallois; Martingale optimal transportation; Optimal Skorokhod embedding; Duality; Monotonicity principle; Stability; Vallois' solution

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guo, G. (2016). Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2016SACLX038

Chicago Manual of Style (16th Edition):

Guo, Gaoyue. “Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal.” 2016. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2016SACLX038.

MLA Handbook (7th Edition):

Guo, Gaoyue. “Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal.” 2016. Web. 23 Jul 2019.

Vancouver:

Guo G. Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal. [Internet] [Doctoral dissertation]. Paris Saclay; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016SACLX038.

Council of Science Editors:

Guo G. Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding : Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal. [Doctoral Dissertation]. Paris Saclay; 2016. Available from: http://www.theses.fr/2016SACLX038

29. Nenna, Luca. Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges.

Degree: Docteur es, Sciences, 2016, Paris Sciences et Lettres

Dans cette thèse, notre but est de donner un cadre numérique général pour approcher les solutions des problèmes du transport optimal (TO). L’idée générale est… (more)

Subjects/Keywords: Transport optimal; Transport Optimal Multi-Marges; Régularisation entropique; Algorithme de Bregman; Algorithme de Dykstra; Équations d’Euler; Tfd; Problème de Schrödinger; Map fractale; Cournot-Nash; Transport Partiel; Contrainte de capacité; Barycentre de Wasserstein; Optimal transport; Multi-Marginal Optimal transport; Entropic regularization; Dykstra algorithm; Bregman algorithm; Euler equations; Dft; Schrödinger problem; Fractal map; Cournot-Nash; Partial transport; Capacity constraint; Wasserstein barycenter; 519.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nenna, L. (2016). Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges. (Doctoral Dissertation). Paris Sciences et Lettres. Retrieved from http://www.theses.fr/2016PSLED017

Chicago Manual of Style (16th Edition):

Nenna, Luca. “Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges.” 2016. Doctoral Dissertation, Paris Sciences et Lettres. Accessed July 23, 2019. http://www.theses.fr/2016PSLED017.

MLA Handbook (7th Edition):

Nenna, Luca. “Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges.” 2016. Web. 23 Jul 2019.

Vancouver:

Nenna L. Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016PSLED017.

Council of Science Editors:

Nenna L. Numerical Methods for Multi-Marginal Optimal Transportation : Méthodes numériques pour le transport optimal multi-marges. [Doctoral Dissertation]. Paris Sciences et Lettres; 2016. Available from: http://www.theses.fr/2016PSLED017

30. Preux, Anthony. Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris Saclay

Dans cette thèse, nous nous intéressons aux équations des gaz sans pression avec contrainte de congestion qui soulèvent encore de nombreuses questions. La stratégie que… (more)

Subjects/Keywords: Transport optimal; Gaz sans pression; Contrainte de congestion; Schéma JKO; Optimal transportation; Pressureless Euler equations; Maximal density constraint; JKO scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Preux, A. (2016). Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2016SACLS435

Chicago Manual of Style (16th Edition):

Preux, Anthony. “Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint.” 2016. Doctoral Dissertation, Paris Saclay. Accessed July 23, 2019. http://www.theses.fr/2016SACLS435.

MLA Handbook (7th Edition):

Preux, Anthony. “Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint.” 2016. Web. 23 Jul 2019.

Vancouver:

Preux A. Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint. [Internet] [Doctoral dissertation]. Paris Saclay; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016SACLS435.

Council of Science Editors:

Preux A. Transport optimal et équations des gaz sans pression avec contrainte de densité maximale : Optimal transportation and pressureless Euler equations with maximal density constraint. [Doctoral Dissertation]. Paris Saclay; 2016. Available from: http://www.theses.fr/2016SACLS435

[1] [2] [3]

.