Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Trace formulas). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Hong Kong

1. 王英男; Wang, Yingnan. Trace formulas and their applications on Hecke eigenvalues.

Degree: PhD, 2012, University of Hong Kong

The objective of the thesis is to investigate the trace formulas and their applications on Hecke eigenvalues, especially on the distribution of Hecke eigenvalues. This… (more)

Subjects/Keywords: Trace formulas.; Eigenvalues.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

王英男; Wang, Y. (2012). Trace formulas and their applications on Hecke eigenvalues. (Doctoral Dissertation). University of Hong Kong. Retrieved from Wang, Y. [王英男]. (2012). Trace formulas and their applications on Hecke eigenvalues. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4832952 ; http://dx.doi.org/10.5353/th_b4832952 ; http://hdl.handle.net/10722/173871

Chicago Manual of Style (16th Edition):

王英男; Wang, Yingnan. “Trace formulas and their applications on Hecke eigenvalues.” 2012. Doctoral Dissertation, University of Hong Kong. Accessed July 20, 2019. Wang, Y. [王英男]. (2012). Trace formulas and their applications on Hecke eigenvalues. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4832952 ; http://dx.doi.org/10.5353/th_b4832952 ; http://hdl.handle.net/10722/173871.

MLA Handbook (7th Edition):

王英男; Wang, Yingnan. “Trace formulas and their applications on Hecke eigenvalues.” 2012. Web. 20 Jul 2019.

Vancouver:

王英男; Wang Y. Trace formulas and their applications on Hecke eigenvalues. [Internet] [Doctoral dissertation]. University of Hong Kong; 2012. [cited 2019 Jul 20]. Available from: Wang, Y. [王英男]. (2012). Trace formulas and their applications on Hecke eigenvalues. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4832952 ; http://dx.doi.org/10.5353/th_b4832952 ; http://hdl.handle.net/10722/173871.

Council of Science Editors:

王英男; Wang Y. Trace formulas and their applications on Hecke eigenvalues. [Doctoral Dissertation]. University of Hong Kong; 2012. Available from: Wang, Y. [王英男]. (2012). Trace formulas and their applications on Hecke eigenvalues. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4832952 ; http://dx.doi.org/10.5353/th_b4832952 ; http://hdl.handle.net/10722/173871


University of Hong Kong

2. Ng, Ming-ho. The basis for space of cusp forms and Petersson trace formula.

Degree: M. Phil., 2012, University of Hong Kong

Let S2k(N) be the space of cusp forms of weight 2k and level N. Atkin-Lehner theory shows that S2k(N) can be decomposed into the oldspace… (more)

Subjects/Keywords: Trace formulas.; Cusp forms (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ng, M. (2012). The basis for space of cusp forms and Petersson trace formula. (Masters Thesis). University of Hong Kong. Retrieved from Ng, M. [吳銘豪]. (2012). The basis for space of cusp forms and Petersson trace formula. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4717672 ; http://dx.doi.org/10.5353/th_b4717672 ; http://hdl.handle.net/10722/174338

Chicago Manual of Style (16th Edition):

Ng, Ming-ho. “The basis for space of cusp forms and Petersson trace formula.” 2012. Masters Thesis, University of Hong Kong. Accessed July 20, 2019. Ng, M. [吳銘豪]. (2012). The basis for space of cusp forms and Petersson trace formula. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4717672 ; http://dx.doi.org/10.5353/th_b4717672 ; http://hdl.handle.net/10722/174338.

MLA Handbook (7th Edition):

Ng, Ming-ho. “The basis for space of cusp forms and Petersson trace formula.” 2012. Web. 20 Jul 2019.

Vancouver:

Ng M. The basis for space of cusp forms and Petersson trace formula. [Internet] [Masters thesis]. University of Hong Kong; 2012. [cited 2019 Jul 20]. Available from: Ng, M. [吳銘豪]. (2012). The basis for space of cusp forms and Petersson trace formula. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4717672 ; http://dx.doi.org/10.5353/th_b4717672 ; http://hdl.handle.net/10722/174338.

Council of Science Editors:

Ng M. The basis for space of cusp forms and Petersson trace formula. [Masters Thesis]. University of Hong Kong; 2012. Available from: Ng, M. [吳銘豪]. (2012). The basis for space of cusp forms and Petersson trace formula. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4717672 ; http://dx.doi.org/10.5353/th_b4717672 ; http://hdl.handle.net/10722/174338


The Ohio State University

3. Belfanti, Edward Michael, Jr. Aspects of Automorphic Induction.

Degree: PhD, Mathematics, 2018, The Ohio State University

 Langlands' functoriality conjectures predict how automorphic representations of different groups are related to one another. Automorphic induction is a basic case of functoriality motivated by… (more)

Subjects/Keywords: Mathematics; Automorphic representations, trace formulas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belfanti, Edward Michael, J. (2018). Aspects of Automorphic Induction. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1525706818378677

Chicago Manual of Style (16th Edition):

Belfanti, Edward Michael, Jr. “Aspects of Automorphic Induction.” 2018. Doctoral Dissertation, The Ohio State University. Accessed July 20, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525706818378677.

MLA Handbook (7th Edition):

Belfanti, Edward Michael, Jr. “Aspects of Automorphic Induction.” 2018. Web. 20 Jul 2019.

Vancouver:

Belfanti, Edward Michael J. Aspects of Automorphic Induction. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2019 Jul 20]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1525706818378677.

Council of Science Editors:

Belfanti, Edward Michael J. Aspects of Automorphic Induction. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1525706818378677


Columbia University

4. Filip, Ioan. A local relative trace formula for spherical varieties.

Degree: 2016, Columbia University

 Let F be a local non-Archimedean field of characteristic zero. We prove a Plancherel formula for the symmetric space GL(2,F)\GL(2,E), where E/F is an unramified… (more)

Subjects/Keywords: Combinatorial geometry; Geometry, Algebraic; Mathematics; Trace formulas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Filip, I. (2016). A local relative trace formula for spherical varieties. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8HX1CWK

Chicago Manual of Style (16th Edition):

Filip, Ioan. “A local relative trace formula for spherical varieties.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8HX1CWK.

MLA Handbook (7th Edition):

Filip, Ioan. “A local relative trace formula for spherical varieties.” 2016. Web. 20 Jul 2019.

Vancouver:

Filip I. A local relative trace formula for spherical varieties. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8HX1CWK.

Council of Science Editors:

Filip I. A local relative trace formula for spherical varieties. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8HX1CWK


Columbia University

5. Guerreiro, João Leitão. A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms.

Degree: 2016, Columbia University

 We study the problem of the distribution of certain GL(3) Maass forms, namely, we obtain a Weyl’s law type result that characterizes the distribution of… (more)

Subjects/Keywords: Eigenvalues; Mathematics; Trace formulas; Weyl's problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guerreiro, J. L. (2016). A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8GM87JP

Chicago Manual of Style (16th Edition):

Guerreiro, João Leitão. “A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8GM87JP.

MLA Handbook (7th Edition):

Guerreiro, João Leitão. “A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms.” 2016. Web. 20 Jul 2019.

Vancouver:

Guerreiro JL. A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8GM87JP.

Council of Science Editors:

Guerreiro JL. A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8GM87JP

6. Valverde, Cesar, 1984-. Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula.

Degree: Mathematical Sciences, 2012, Rutgers University

Subjects/Keywords: Trace formulas; Geometrical models

trace identity of the form (1.10) IGL2n (f : GLn × GLn , 1; N, θ) = ISpn… …obtain the following equality of geometric sides of relative trace formula: Theorem 1.1. We… …have the relative trace identity (1.14) ˜ : N ′ , θ 1 ; N ′ , θ′ ). IGL2n… …the definition of Casselman. 15 3. The trace identity between GL2n and Sp2n and an… …suggests the following relative trace formula: ′ Theorem 3.1. Let f = ⊗fv ∈ S(Sp2n (A… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Valverde, Cesar, 1. (2012). Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula. (Thesis). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000065066

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Valverde, Cesar, 1984-. “Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula.” 2012. Thesis, Rutgers University. Accessed July 20, 2019. http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000065066.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Valverde, Cesar, 1984-. “Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula.” 2012. Web. 20 Jul 2019.

Vancouver:

Valverde, Cesar 1. Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula. [Internet] [Thesis]. Rutgers University; 2012. [cited 2019 Jul 20]. Available from: http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000065066.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Valverde, Cesar 1. Products of distinct Whittaker coefficients on the metaplectic group and the Relative Trace Formula. [Thesis]. Rutgers University; 2012. Available from: http://hdl.rutgers.edu/1782.1/rucore10002600001.ETD.000065066

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Columbia University

7. Krishna, Rahul Marathe. Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula.

Degree: 2016, Columbia University

We provide a new relative trace formula approach to the theorem of Waldspurger on toric periods for GL₂, with possible applications to the global Gross-Prasad conjecture for orthogonal groups.

Subjects/Keywords: Trace formulas; Mathematics; Linear algebraic groups; Torus (Geometry)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krishna, R. M. (2016). Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8FB52XB

Chicago Manual of Style (16th Edition):

Krishna, Rahul Marathe. “Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8FB52XB.

MLA Handbook (7th Edition):

Krishna, Rahul Marathe. “Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula.” 2016. Web. 20 Jul 2019.

Vancouver:

Krishna RM. Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8FB52XB.

Council of Science Editors:

Krishna RM. Relative Trace Formula for SO₂ × SO₃ and the Waldspurger Formula. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8FB52XB


Columbia University

8. Wang, Chongli. An alternative proof of genericity for unitary group of three variables.

Degree: 2016, Columbia University

 In this thesis, we prove that local genericity implies globally genericity for the quasi-split unitary group U3 for a quadratic extension of number fields E/F.… (more)

Subjects/Keywords: Unitary groups; Group theory; Mellin transform; Mathematics; Trace formulas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, C. (2016). An alternative proof of genericity for unitary group of three variables. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8C24WF7

Chicago Manual of Style (16th Edition):

Wang, Chongli. “An alternative proof of genericity for unitary group of three variables.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8C24WF7.

MLA Handbook (7th Edition):

Wang, Chongli. “An alternative proof of genericity for unitary group of three variables.” 2016. Web. 20 Jul 2019.

Vancouver:

Wang C. An alternative proof of genericity for unitary group of three variables. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8C24WF7.

Council of Science Editors:

Wang C. An alternative proof of genericity for unitary group of three variables. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8C24WF7


University of New Mexico

9. Sedai, Bishnu Prasad. Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents.

Degree: Mathematics & Statistics, 2017, University of New Mexico

  In this dissertation, we study Taylor approximations of functions of operators with Hilbert-Schmidt resolvents. We obtain integral representations for traces of the respective Taylor… (more)

Subjects/Keywords: Trace Formulas; Applied Mathematics; Mathematics; Statistics and Probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sedai, B. P. (2017). Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/math_etds/115

Chicago Manual of Style (16th Edition):

Sedai, Bishnu Prasad. “Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents.” 2017. Doctoral Dissertation, University of New Mexico. Accessed July 20, 2019. https://digitalrepository.unm.edu/math_etds/115.

MLA Handbook (7th Edition):

Sedai, Bishnu Prasad. “Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents.” 2017. Web. 20 Jul 2019.

Vancouver:

Sedai BP. Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents. [Internet] [Doctoral dissertation]. University of New Mexico; 2017. [cited 2019 Jul 20]. Available from: https://digitalrepository.unm.edu/math_etds/115.

Council of Science Editors:

Sedai BP. Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents. [Doctoral Dissertation]. University of New Mexico; 2017. Available from: https://digitalrepository.unm.edu/math_etds/115

10. Assal, Marouane. Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators.

Degree: Docteur es, Mathematiques pures, 2017, Bordeaux

Dans ce travail, nous nous intéressons à l’analyse spectrale des systèmes d’opérateurs pseudodifférentiels semi-classiques. Dans la première partie, nous étudions la généralisation du théorème d’Egorov… (more)

Subjects/Keywords: Systèmes d’opérateurs h-pseudodifférentiels; Théorème d’Egorov en temps longs; Fonction de décalage spectral; Opérateurs de Schrödinger à potentiels matriciels; Formules de trace; Asymptotiques spectrales; Fonction fuite; Systems of h-pseudodifferential operators; Long time Egorov theorem; Spectral shift function; Schrödinger operators with matrix-valued potentials; Trace formulas; Spectral asymptotics; Escape function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Assal, M. (2017). Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2017BORD0586

Chicago Manual of Style (16th Edition):

Assal, Marouane. “Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators.” 2017. Doctoral Dissertation, Bordeaux. Accessed July 20, 2019. http://www.theses.fr/2017BORD0586.

MLA Handbook (7th Edition):

Assal, Marouane. “Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators.” 2017. Web. 20 Jul 2019.

Vancouver:

Assal M. Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators. [Internet] [Doctoral dissertation]. Bordeaux; 2017. [cited 2019 Jul 20]. Available from: http://www.theses.fr/2017BORD0586.

Council of Science Editors:

Assal M. Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels : Spectral analysis of systems of h-pseudodifferential operators. [Doctoral Dissertation]. Bordeaux; 2017. Available from: http://www.theses.fr/2017BORD0586


ETH Zürich

11. Perret-Gentil-dit-Maillard, Corentin. Probabilistic aspects of short sums of trace functions over finite fields.

Degree: 2016, ETH Zürich

Subjects/Keywords: SPURFORMEN (ZAHLENTHEORIE); ENDLICHE KÖRPER (ALGEBRA); L-ADISCHE KÖRPER (ALGEBRAISCHE GEOMETRIE); ZYKLOTOMISCHE ZAHLKÖRPER (ZAHLENTHEORIE); RANDOM WALKS (WAHRSCHEINLICHKEITSRECHNUNG); MONODROMIEGRUPPEN (ALGEBRA); TRACE FORMULAS (NUMBER THEORY); FINITE FIELDS (ALGEBRA); L-ADIC FIELDS (ALGEBRAIC GEOMETRY); CYCLOTOMIC NUMBER FIELDS (NUMBER THEORY); RANDOM WALKS (PROBABILITY THEORY); MONODROMY GROUPS (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perret-Gentil-dit-Maillard, C. (2016). Probabilistic aspects of short sums of trace functions over finite fields. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/156059

Chicago Manual of Style (16th Edition):

Perret-Gentil-dit-Maillard, Corentin. “Probabilistic aspects of short sums of trace functions over finite fields.” 2016. Doctoral Dissertation, ETH Zürich. Accessed July 20, 2019. http://hdl.handle.net/20.500.11850/156059.

MLA Handbook (7th Edition):

Perret-Gentil-dit-Maillard, Corentin. “Probabilistic aspects of short sums of trace functions over finite fields.” 2016. Web. 20 Jul 2019.

Vancouver:

Perret-Gentil-dit-Maillard C. Probabilistic aspects of short sums of trace functions over finite fields. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/20.500.11850/156059.

Council of Science Editors:

Perret-Gentil-dit-Maillard C. Probabilistic aspects of short sums of trace functions over finite fields. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/156059

.