Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Toric geometry). Showing records 1 – 30 of 46 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


Cornell University

1. Pendleton, Ian Alexander. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds .

Degree: 2019, Cornell University

 This is a collection of algebraic topological results for toric origami manifolds, mostly in dimension 4. Using a known formula for the fundamental group of… (more)

Subjects/Keywords: algebraic topology; toric origami; toric symplectic; Mathematics; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pendleton, I. A. (2019). The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/67332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds .” 2019. Thesis, Cornell University. Accessed December 11, 2019. http://hdl.handle.net/1813/67332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds .” 2019. Web. 11 Dec 2019.

Vancouver:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds . [Internet] [Thesis]. Cornell University; 2019. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1813/67332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds . [Thesis]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

2. Geraschenko, Anton Igorevich. Toric Stacks.

Degree: Mathematics, 2011, University of California – Berkeley

 The first purpose of this dissertation is to introduce and develop a theory of toric stacks which encompasses and extends the notions of toric stacks… (more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; toric varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Geraschenko, A. I. (2011). Toric Stacks. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/7sp369k8

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Geraschenko, Anton Igorevich. “Toric Stacks.” 2011. Thesis, University of California – Berkeley. Accessed December 11, 2019. http://www.escholarship.org/uc/item/7sp369k8.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Geraschenko, Anton Igorevich. “Toric Stacks.” 2011. Web. 11 Dec 2019.

Vancouver:

Geraschenko AI. Toric Stacks. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Dec 11]. Available from: http://www.escholarship.org/uc/item/7sp369k8.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Geraschenko AI. Toric Stacks. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/7sp369k8

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Central Florida

3. Chen, Teng. Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems.

Degree: 2011, University of Central Florida

 The dynamics of (bio) chemical reaction networks have been studied by different methods. Among these methods, the chemical reaction network theory has been proven to… (more)

Subjects/Keywords: Bifurcation theory; Dynamics; Geometry; Algebraic; Toric varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, T. (2011). Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems. (Doctoral Dissertation). University of Central Florida. Retrieved from https://stars.library.ucf.edu/etd/6647

Chicago Manual of Style (16th Edition):

Chen, Teng. “Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems.” 2011. Doctoral Dissertation, University of Central Florida. Accessed December 11, 2019. https://stars.library.ucf.edu/etd/6647.

MLA Handbook (7th Edition):

Chen, Teng. “Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems.” 2011. Web. 11 Dec 2019.

Vancouver:

Chen T. Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems. [Internet] [Doctoral dissertation]. University of Central Florida; 2011. [cited 2019 Dec 11]. Available from: https://stars.library.ucf.edu/etd/6647.

Council of Science Editors:

Chen T. Algebraic Aspects of (Bio) Nano-chemical Reaction Networks and Bifurcations in Various Dynamical Systems. [Doctoral Dissertation]. University of Central Florida; 2011. Available from: https://stars.library.ucf.edu/etd/6647


Kansas State University

4. Peabody, Jamie. The GIT fan for a Mori dream space and the μ-secondary polytope.

Degree: PhD, Department of Mathematics, 2019, Kansas State University

 Geometric invariant theory (GIT) was developed by Mumford as a method for constructing quotients by group actions in the context of algebraic geometry. This construction… (more)

Subjects/Keywords: Geometric invariant theory; Mori dream spaces; Tropical geometry; Toric geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peabody, J. (2019). The GIT fan for a Mori dream space and the μ-secondary polytope. (Doctoral Dissertation). Kansas State University. Retrieved from http://hdl.handle.net/2097/40016

Chicago Manual of Style (16th Edition):

Peabody, Jamie. “The GIT fan for a Mori dream space and the μ-secondary polytope.” 2019. Doctoral Dissertation, Kansas State University. Accessed December 11, 2019. http://hdl.handle.net/2097/40016.

MLA Handbook (7th Edition):

Peabody, Jamie. “The GIT fan for a Mori dream space and the μ-secondary polytope.” 2019. Web. 11 Dec 2019.

Vancouver:

Peabody J. The GIT fan for a Mori dream space and the μ-secondary polytope. [Internet] [Doctoral dissertation]. Kansas State University; 2019. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/2097/40016.

Council of Science Editors:

Peabody J. The GIT fan for a Mori dream space and the μ-secondary polytope. [Doctoral Dissertation]. Kansas State University; 2019. Available from: http://hdl.handle.net/2097/40016


University of Alberta

5. Harder, Andrew. The Geometry of Landau-Ginzburg Models.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2016, University of Alberta

 In this thesis we address several questions around mirror symmetry for Fano manifolds and Calabi-Yau varieties. Fano mirror symmetry is a relationship between a Fano… (more)

Subjects/Keywords: Toric geometry; Fano varieties; Landau-Ginzburg models; Calabi-Yau varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harder, A. (2016). The Geometry of Landau-Ginzburg Models. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c0z708w408

Chicago Manual of Style (16th Edition):

Harder, Andrew. “The Geometry of Landau-Ginzburg Models.” 2016. Doctoral Dissertation, University of Alberta. Accessed December 11, 2019. https://era.library.ualberta.ca/files/c0z708w408.

MLA Handbook (7th Edition):

Harder, Andrew. “The Geometry of Landau-Ginzburg Models.” 2016. Web. 11 Dec 2019.

Vancouver:

Harder A. The Geometry of Landau-Ginzburg Models. [Internet] [Doctoral dissertation]. University of Alberta; 2016. [cited 2019 Dec 11]. Available from: https://era.library.ualberta.ca/files/c0z708w408.

Council of Science Editors:

Harder A. The Geometry of Landau-Ginzburg Models. [Doctoral Dissertation]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/c0z708w408


University of Edinburgh

6. Griffiths, Hugh Norman. Self-dual metrics on toric 4-manifolds : extending the Joyce construction.

Degree: PhD, 2009, University of Edinburgh

Toric geometry studies manifolds M2n acted on effectively by a torus of half their dimension, Tn. Joyce shows that for such a 4-manifold sufficient conditions… (more)

Subjects/Keywords: 510; toric geometry; self-dual; differential; Kahler; Einstein

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Griffiths, H. N. (2009). Self-dual metrics on toric 4-manifolds : extending the Joyce construction. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/3969

Chicago Manual of Style (16th Edition):

Griffiths, Hugh Norman. “Self-dual metrics on toric 4-manifolds : extending the Joyce construction.” 2009. Doctoral Dissertation, University of Edinburgh. Accessed December 11, 2019. http://hdl.handle.net/1842/3969.

MLA Handbook (7th Edition):

Griffiths, Hugh Norman. “Self-dual metrics on toric 4-manifolds : extending the Joyce construction.” 2009. Web. 11 Dec 2019.

Vancouver:

Griffiths HN. Self-dual metrics on toric 4-manifolds : extending the Joyce construction. [Internet] [Doctoral dissertation]. University of Edinburgh; 2009. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1842/3969.

Council of Science Editors:

Griffiths HN. Self-dual metrics on toric 4-manifolds : extending the Joyce construction. [Doctoral Dissertation]. University of Edinburgh; 2009. Available from: http://hdl.handle.net/1842/3969


Boston University

7. Fischer, Benjamin Parker. Perturbed polyhedra and the construction of local Euler-Maclaurin formulas.

Degree: PhD, Mathematics & Statistics, 2016, Boston University

 A polyhedron P is a subset of a rational vector space V bounded by hyperplanes. If we fix a lattice in V , then we… (more)

Subjects/Keywords: Mathematics; Combinatorics; Euler-Maclaurin; Polyhedra; Algebraic geometry; Toric varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fischer, B. P. (2016). Perturbed polyhedra and the construction of local Euler-Maclaurin formulas. (Doctoral Dissertation). Boston University. Retrieved from http://hdl.handle.net/2144/17733

Chicago Manual of Style (16th Edition):

Fischer, Benjamin Parker. “Perturbed polyhedra and the construction of local Euler-Maclaurin formulas.” 2016. Doctoral Dissertation, Boston University. Accessed December 11, 2019. http://hdl.handle.net/2144/17733.

MLA Handbook (7th Edition):

Fischer, Benjamin Parker. “Perturbed polyhedra and the construction of local Euler-Maclaurin formulas.” 2016. Web. 11 Dec 2019.

Vancouver:

Fischer BP. Perturbed polyhedra and the construction of local Euler-Maclaurin formulas. [Internet] [Doctoral dissertation]. Boston University; 2016. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/2144/17733.

Council of Science Editors:

Fischer BP. Perturbed polyhedra and the construction of local Euler-Maclaurin formulas. [Doctoral Dissertation]. Boston University; 2016. Available from: http://hdl.handle.net/2144/17733


George Mason University

8. Johannsen, David Andrew. The Geometry of the Quotient Stack Arising From a Stacky Fan .

Degree: 2013, George Mason University

 A quotient stack, [Z/G], is a geometric object that models the quotient of a space, Z, by the action of a Lie group, G, while… (more)

Subjects/Keywords: Mathematics; orbifold; quotient stack; symplectic geometry; toric variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johannsen, D. A. (2013). The Geometry of the Quotient Stack Arising From a Stacky Fan . (Thesis). George Mason University. Retrieved from http://hdl.handle.net/1920/8786

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Johannsen, David Andrew. “The Geometry of the Quotient Stack Arising From a Stacky Fan .” 2013. Thesis, George Mason University. Accessed December 11, 2019. http://hdl.handle.net/1920/8786.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Johannsen, David Andrew. “The Geometry of the Quotient Stack Arising From a Stacky Fan .” 2013. Web. 11 Dec 2019.

Vancouver:

Johannsen DA. The Geometry of the Quotient Stack Arising From a Stacky Fan . [Internet] [Thesis]. George Mason University; 2013. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1920/8786.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johannsen DA. The Geometry of the Quotient Stack Arising From a Stacky Fan . [Thesis]. George Mason University; 2013. Available from: http://hdl.handle.net/1920/8786

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Wilfong, Andrew. TORIC VARIETIES AND COBORDISM.

Degree: 2013, University of Kentucky

 A long-standing problem in cobordism theory has been to find convenient manifolds to represent cobordism classes. For example, in the late 1950's, Hirzebruch asked which… (more)

Subjects/Keywords: toric variety; cobordism; fan; polytope; blow-up; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilfong, A. (2013). TORIC VARIETIES AND COBORDISM. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/8

Chicago Manual of Style (16th Edition):

Wilfong, Andrew. “TORIC VARIETIES AND COBORDISM.” 2013. Doctoral Dissertation, University of Kentucky. Accessed December 11, 2019. https://uknowledge.uky.edu/math_etds/8.

MLA Handbook (7th Edition):

Wilfong, Andrew. “TORIC VARIETIES AND COBORDISM.” 2013. Web. 11 Dec 2019.

Vancouver:

Wilfong A. TORIC VARIETIES AND COBORDISM. [Internet] [Doctoral dissertation]. University of Kentucky; 2013. [cited 2019 Dec 11]. Available from: https://uknowledge.uky.edu/math_etds/8.

Council of Science Editors:

Wilfong A. TORIC VARIETIES AND COBORDISM. [Doctoral Dissertation]. University of Kentucky; 2013. Available from: https://uknowledge.uky.edu/math_etds/8


San Jose State University

10. Obatake, Nida K. Drawing place field diagrams of neural codes using toric ideals.

Degree: MS, Mathematics and Statistics, 2016, San Jose State University

  A neural code is a collection of codewords (0-1 vectors) of a given length n; it captures the co-firing patterns of a set of… (more)

Subjects/Keywords: Algebra; Algebraic Geometry; Information Visualization; Neural Codes; Toric Ideals

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Obatake, N. K. (2016). Drawing place field diagrams of neural codes using toric ideals. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733

Chicago Manual of Style (16th Edition):

Obatake, Nida K. “Drawing place field diagrams of neural codes using toric ideals.” 2016. Masters Thesis, San Jose State University. Accessed December 11, 2019. https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733.

MLA Handbook (7th Edition):

Obatake, Nida K. “Drawing place field diagrams of neural codes using toric ideals.” 2016. Web. 11 Dec 2019.

Vancouver:

Obatake NK. Drawing place field diagrams of neural codes using toric ideals. [Internet] [Masters thesis]. San Jose State University; 2016. [cited 2019 Dec 11]. Available from: https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733.

Council of Science Editors:

Obatake NK. Drawing place field diagrams of neural codes using toric ideals. [Masters Thesis]. San Jose State University; 2016. Available from: https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733


Université de Montréal

11. Boulanger, Laurence. Sur une classe de structures kählériennes généralisées toriques .

Degree: 2016, Université de Montréal

 Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour… (more)

Subjects/Keywords: Géométrie kählérienne généralisée; Géométrie torique; Courbure scalaire; Generalized Kähler geometry; Toric geometry; Scalar curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boulanger, L. (2016). Sur une classe de structures kählériennes généralisées toriques . (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/13717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Boulanger, Laurence. “Sur une classe de structures kählériennes généralisées toriques .” 2016. Thesis, Université de Montréal. Accessed December 11, 2019. http://hdl.handle.net/1866/13717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Boulanger, Laurence. “Sur une classe de structures kählériennes généralisées toriques .” 2016. Web. 11 Dec 2019.

Vancouver:

Boulanger L. Sur une classe de structures kählériennes généralisées toriques . [Internet] [Thesis]. Université de Montréal; 2016. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1866/13717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boulanger L. Sur une classe de structures kählériennes généralisées toriques . [Thesis]. Université de Montréal; 2016. Available from: http://hdl.handle.net/1866/13717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – San Diego

12. Palmer, Joseph. Symplectic invariants and moduli spaces of integrable systems.

Degree: Mathematics, 2016, University of California – San Diego

 In this dissertation I prove a number of results about the symplectic geometry of finite dimensional integrable Hamiltonian systems, especially those of semitoric type. Integrable… (more)

Subjects/Keywords: Mathematics; integrable systems; minimal models; semitoric systems; symplectic geometry; sympletic capacities; toric geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palmer, J. (2016). Symplectic invariants and moduli spaces of integrable systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Thesis, University of California – San Diego. Accessed December 11, 2019. http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Web. 11 Dec 2019.

Vancouver:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2019 Dec 11]. Available from: http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Freie Universität Berlin

13. Kastner, Lars. Ext auf affinen torischen Varietäten.

Degree: 2016, Freie Universität Berlin

 Diese Arbeit beschäftigt sich mit Ext-Moduln Torus-invarianter Weil-Divisoren auf normalen affinen torischen Varietäten. Solche Weil-Divisoren lassen sich durch Polyeder beschreiben, die dieselben Facetten-Vektoren haben, durch… (more)

Subjects/Keywords: algebraic geometry; toric geometry; cyclic quotient singularities; Ext; Tor; 500 Naturwissenschaften und Mathematik::510 Mathematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kastner, L. (2016). Ext auf affinen torischen Varietäten. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-5247

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kastner, Lars. “Ext auf affinen torischen Varietäten.” 2016. Thesis, Freie Universität Berlin. Accessed December 11, 2019. http://dx.doi.org/10.17169/refubium-5247.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kastner, Lars. “Ext auf affinen torischen Varietäten.” 2016. Web. 11 Dec 2019.

Vancouver:

Kastner L. Ext auf affinen torischen Varietäten. [Internet] [Thesis]. Freie Universität Berlin; 2016. [cited 2019 Dec 11]. Available from: http://dx.doi.org/10.17169/refubium-5247.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kastner L. Ext auf affinen torischen Varietäten. [Thesis]. Freie Universität Berlin; 2016. Available from: http://dx.doi.org/10.17169/refubium-5247

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Western Ontario

14. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.

Degree: 2013, University of Western Ontario

 In this thesis, we study 4-dimensional weighted projective spaces and homotopy properties of their symplectomorphism groups. Using these computations, we also investigate some homotopy theoretic… (more)

Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed December 11, 2019. https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 11 Dec 2019.

Vancouver:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2019 Dec 11]. Available from: https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Western Ontario

15. Gonzales, Richard P. GKM theory of rationally smooth group embeddings.

Degree: 2011, University of Western Ontario

 This thesis is concerned with the study of rationally smooth group embeddings. We prove that the equivariant cohomology of any of these compactificationscan be described,… (more)

Subjects/Keywords: equivariant cohomology; GKM theory; rationally smooth; algebraic monoids; group embeddings; toric varieties; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gonzales, R. P. (2011). GKM theory of rationally smooth group embeddings. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gonzales, Richard P. “GKM theory of rationally smooth group embeddings.” 2011. Thesis, University of Western Ontario. Accessed December 11, 2019. https://ir.lib.uwo.ca/etd/216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gonzales, Richard P. “GKM theory of rationally smooth group embeddings.” 2011. Web. 11 Dec 2019.

Vancouver:

Gonzales RP. GKM theory of rationally smooth group embeddings. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2019 Dec 11]. Available from: https://ir.lib.uwo.ca/etd/216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gonzales RP. GKM theory of rationally smooth group embeddings. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Garbary, Robert. On the local positivity of line bundles on algebraic surfaces.

Degree: 2015, University of Waterloo

In this thesis, we define a measure for how `positive' an effective line bundle is at a point on a variety, and prove that it is linear on the numerically effective subcone on a smooth, complete, toric surface.

Subjects/Keywords: Algebraic Geometry; Surfaces; Toric Varieties

…complete, toric surfaces: the machinery of toric geometry is more than sufficient to calculate γp… …major open problem in algebraic geometry, may be formulated in the language of Seshadri… …much work trying to calculate Seshadri constants on toric varieties. At T -invariant points… …a toric variety at a T -invariant point is again a toric variety, and it is easy to tell… …if a divisor is nef on a toric variety. There are also results away from the T -invariant… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garbary, R. (2015). On the local positivity of line bundles on algebraic surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/9050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garbary, Robert. “On the local positivity of line bundles on algebraic surfaces.” 2015. Thesis, University of Waterloo. Accessed December 11, 2019. http://hdl.handle.net/10012/9050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garbary, Robert. “On the local positivity of line bundles on algebraic surfaces.” 2015. Web. 11 Dec 2019.

Vancouver:

Garbary R. On the local positivity of line bundles on algebraic surfaces. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/10012/9050.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garbary R. On the local positivity of line bundles on algebraic surfaces. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/9050

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Cornell University

17. Huynh, My Thanh. The Gromov Width of Symplectic Cuts of Symplectic Manifolds .

Degree: 2018, Cornell University

 In 1985, Gromov discovered a rigidity phenonmenon for symplectic embeddings which led to the concept of Gromov width: a measure of the largest ball that… (more)

Subjects/Keywords: grassmannian; gromov width; pseudoholomorphic curves; symplectic cut; symplectic geometry; toric variety; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huynh, M. T. (2018). The Gromov Width of Symplectic Cuts of Symplectic Manifolds . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59394

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Thesis, Cornell University. Accessed December 11, 2019. http://hdl.handle.net/1813/59394.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Web. 11 Dec 2019.

Vancouver:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1813/59394.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59394

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Cornell University

18. Da Silva, Sergio Mathew Luis. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS .

Degree: 2018, Cornell University

 We will describe a one-step “Gorensteinization” process for a Schubert variety by blowing-up along its boundary divisor. The local question involves Kazhdan-Lusztig varieties which can… (more)

Subjects/Keywords: Algebraic Geometry; Mathematics; toric variety; Gorenstein Variety; Kazhdan-Lusztig Variety; Schubert Variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Da Silva, S. M. L. (2018). ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59491

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Da Silva, Sergio Mathew Luis. “ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS .” 2018. Thesis, Cornell University. Accessed December 11, 2019. http://hdl.handle.net/1813/59491.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Da Silva, Sergio Mathew Luis. “ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS .” 2018. Web. 11 Dec 2019.

Vancouver:

Da Silva SML. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1813/59491.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Da Silva SML. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59491

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

19. Subbarao, Prashant. Toric Elliptic Fibrations Over Hirzebruchs.

Degree: 2017, University of Pennsylvania

 F-theory offers a compelling, nonperturbative framework in which to construct string vacua in even dimensional space-time. These theories are described by an elliptically fibered Calabi-Yau… (more)

Subjects/Keywords: elliptic fibrations; F-theory; high energy; string theory; supergravity; toric geometry; Mathematics; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Subbarao, P. (2017). Toric Elliptic Fibrations Over Hirzebruchs. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2597

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Subbarao, Prashant. “Toric Elliptic Fibrations Over Hirzebruchs.” 2017. Thesis, University of Pennsylvania. Accessed December 11, 2019. https://repository.upenn.edu/edissertations/2597.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Subbarao, Prashant. “Toric Elliptic Fibrations Over Hirzebruchs.” 2017. Web. 11 Dec 2019.

Vancouver:

Subbarao P. Toric Elliptic Fibrations Over Hirzebruchs. [Internet] [Thesis]. University of Pennsylvania; 2017. [cited 2019 Dec 11]. Available from: https://repository.upenn.edu/edissertations/2597.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Subbarao P. Toric Elliptic Fibrations Over Hirzebruchs. [Thesis]. University of Pennsylvania; 2017. Available from: https://repository.upenn.edu/edissertations/2597

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

20. Hines, Clinton M. Spin Cobordism and Quasitoric Manifolds.

Degree: 2014, University of Kentucky

 This dissertation demonstrates a procedure to view any quasitoric manifold as a “minimal” sub-manifold of an ambient quasitoric manifold of codimension two via the wedge… (more)

Subjects/Keywords: quasitoric manifolds; toric topology; wedge polytope; complex projective spaces; todd genus; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hines, C. M. (2014). Spin Cobordism and Quasitoric Manifolds. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/17

Chicago Manual of Style (16th Edition):

Hines, Clinton M. “Spin Cobordism and Quasitoric Manifolds.” 2014. Doctoral Dissertation, University of Kentucky. Accessed December 11, 2019. https://uknowledge.uky.edu/math_etds/17.

MLA Handbook (7th Edition):

Hines, Clinton M. “Spin Cobordism and Quasitoric Manifolds.” 2014. Web. 11 Dec 2019.

Vancouver:

Hines CM. Spin Cobordism and Quasitoric Manifolds. [Internet] [Doctoral dissertation]. University of Kentucky; 2014. [cited 2019 Dec 11]. Available from: https://uknowledge.uky.edu/math_etds/17.

Council of Science Editors:

Hines CM. Spin Cobordism and Quasitoric Manifolds. [Doctoral Dissertation]. University of Kentucky; 2014. Available from: https://uknowledge.uky.edu/math_etds/17


Freie Universität Berlin

21. Ilten, Nathan Owen. Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins.

Degree: 2010, Freie Universität Berlin

 Diese Dissertation befasst sich mit Deformationen von rationalen, normalen Varietäten mit einer Toruswirkung der Komplexität eins. Solche Varietäten lassen sich durch polyedrische Divisoren und divisorielle… (more)

Subjects/Keywords: algebraic geometry; toric varieties; deformation theory; T-varieties; 500 Naturwissenschaften und Mathematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ilten, N. O. (2010). Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins. (Thesis). Freie Universität Berlin. Retrieved from https://refubium.fu-berlin.de/handle/fub188/10828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ilten, Nathan Owen. “Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins.” 2010. Thesis, Freie Universität Berlin. Accessed December 11, 2019. https://refubium.fu-berlin.de/handle/fub188/10828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ilten, Nathan Owen. “Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins.” 2010. Web. 11 Dec 2019.

Vancouver:

Ilten NO. Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins. [Internet] [Thesis]. Freie Universität Berlin; 2010. [cited 2019 Dec 11]. Available from: https://refubium.fu-berlin.de/handle/fub188/10828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ilten NO. Deformationen von rationalen Varietäten mit Toruswirkung der Kodimension eins. [Thesis]. Freie Universität Berlin; 2010. Available from: https://refubium.fu-berlin.de/handle/fub188/10828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Bath

22. Prabhu-Naik, Nathan. Tilting bundles and toric Fano varieties.

Degree: PhD, 2015, University of Bath

 This thesis constructs tilting bundles obtained from full strong exceptional collections of line bundles on all smooth toric Fano fourfolds. The tilting bundles lead to… (more)

Subjects/Keywords: 516.3; algebraic geometry; derived categories; Calabi-Yau algebras; toric varieties; quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prabhu-Naik, N. (2015). Tilting bundles and toric Fano varieties. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721

Chicago Manual of Style (16th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Doctoral Dissertation, University of Bath. Accessed December 11, 2019. https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

MLA Handbook (7th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Web. 11 Dec 2019.

Vancouver:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Internet] [Doctoral dissertation]. University of Bath; 2015. [cited 2019 Dec 11]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

Council of Science Editors:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Doctoral Dissertation]. University of Bath; 2015. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721


Colorado State University

23. Eddy, Thomas D. Improved stick number upper bounds.

Degree: MS(M.S.), Mathematics, 2019, Colorado State University

 A stick knot is a mathematical knot formed by a chain of straight line segments. For a knot K, define the stick number of K,… (more)

Subjects/Keywords: knot theory; stick number; toric symplectic manifold; polygon index; edge number; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eddy, T. D. (2019). Improved stick number upper bounds. (Masters Thesis). Colorado State University. Retrieved from http://hdl.handle.net/10217/195411

Chicago Manual of Style (16th Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Masters Thesis, Colorado State University. Accessed December 11, 2019. http://hdl.handle.net/10217/195411.

MLA Handbook (7th Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Web. 11 Dec 2019.

Vancouver:

Eddy TD. Improved stick number upper bounds. [Internet] [Masters thesis]. Colorado State University; 2019. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/10217/195411.

Council of Science Editors:

Eddy TD. Improved stick number upper bounds. [Masters Thesis]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195411

24. Scott, Geoffrey Stephen. Torus Actions and Singularities in Symplectic Geometry.

Degree: PhD, Mathematics, 2014, University of Michigan

 This thesis begins with a generalization of two classic results about toric varieties to the context of varieties with codimension-one torus actions: the toric cone… (more)

Subjects/Keywords: Toric Geometry; Symplectic Geometry; Mathematics; Science

…both symplectic geometry and toric geometry. We begin with algebraic toric geometry, segue… …through toric symplectic geometry, and end with symplectic geometry. The results from these… …horizontal curves. We end the chapter with examples in Section 2.4. 1.2 Outline: toric geometry of… …corresponding objects in symplectic geometry, called symplectic toric manifolds. In the same way that… …Chapter III the geometry of b-manifolds in the context of toric geometry, b-manifolds are… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scott, G. S. (2014). Torus Actions and Singularities in Symplectic Geometry. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/107059

Chicago Manual of Style (16th Edition):

Scott, Geoffrey Stephen. “Torus Actions and Singularities in Symplectic Geometry.” 2014. Doctoral Dissertation, University of Michigan. Accessed December 11, 2019. http://hdl.handle.net/2027.42/107059.

MLA Handbook (7th Edition):

Scott, Geoffrey Stephen. “Torus Actions and Singularities in Symplectic Geometry.” 2014. Web. 11 Dec 2019.

Vancouver:

Scott GS. Torus Actions and Singularities in Symplectic Geometry. [Internet] [Doctoral dissertation]. University of Michigan; 2014. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/2027.42/107059.

Council of Science Editors:

Scott GS. Torus Actions and Singularities in Symplectic Geometry. [Doctoral Dissertation]. University of Michigan; 2014. Available from: http://hdl.handle.net/2027.42/107059


University of California – Berkeley

25. Zhou, Qiao. Applications of Toric Geometry to Geometric Representation Theory.

Degree: Mathematics, 2017, University of California – Berkeley

 We study the algebraic geometry and combinatorics of the affine Grassmannian and affine flag variety, which are infinite-dimensional analogs of the ordinary Grassmannian and flag… (more)

Subjects/Keywords: Mathematics; Affine Grassmannian; Deligne-Lusztig Theory; Geometric Langlands Correspondence; Geometric Representation Theory; Lie Theory; Toric Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, Q. (2017). Applications of Toric Geometry to Geometric Representation Theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/2ck4r2xt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Thesis, University of California – Berkeley. Accessed December 11, 2019. http://www.escholarship.org/uc/item/2ck4r2xt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Web. 11 Dec 2019.

Vancouver:

Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2019 Dec 11]. Available from: http://www.escholarship.org/uc/item/2ck4r2xt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/2ck4r2xt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Gualdi, Roberto. Height of cycles in toric varieties : Hauteur de cycles de variétés toriques.

Degree: Docteur es, Mathématiques Pures, 2018, Bordeaux; Universitat internacional de Catalunya

Nous étudions dans cette thése la relation entre certaines hauteurs d'Arakelov de cycles de variétés toriques et les caractéristiques arithmétiques des polynômes de Laurent qui… (more)

Subjects/Keywords: Hauteurs; Variétés toriques; Géométrie d'Arakelov; Fonctions de Ronkin; Intégrale mixte; Heights; Toric varieties; Arakelov geometry; Ronkin functions; Mixed integral

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gualdi, R. (2018). Height of cycles in toric varieties : Hauteur de cycles de variétés toriques. (Doctoral Dissertation). Bordeaux; Universitat internacional de Catalunya. Retrieved from http://www.theses.fr/2018BORD0139

Chicago Manual of Style (16th Edition):

Gualdi, Roberto. “Height of cycles in toric varieties : Hauteur de cycles de variétés toriques.” 2018. Doctoral Dissertation, Bordeaux; Universitat internacional de Catalunya. Accessed December 11, 2019. http://www.theses.fr/2018BORD0139.

MLA Handbook (7th Edition):

Gualdi, Roberto. “Height of cycles in toric varieties : Hauteur de cycles de variétés toriques.” 2018. Web. 11 Dec 2019.

Vancouver:

Gualdi R. Height of cycles in toric varieties : Hauteur de cycles de variétés toriques. [Internet] [Doctoral dissertation]. Bordeaux; Universitat internacional de Catalunya; 2018. [cited 2019 Dec 11]. Available from: http://www.theses.fr/2018BORD0139.

Council of Science Editors:

Gualdi R. Height of cycles in toric varieties : Hauteur de cycles de variétés toriques. [Doctoral Dissertation]. Bordeaux; Universitat internacional de Catalunya; 2018. Available from: http://www.theses.fr/2018BORD0139


University of Western Ontario

27. Yan, Youlong. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.

Degree: 2014, University of Western Ontario

 The derived category of coherent sheaves on a smooth projective variety is an important object of study in algebraic geometry. One important device relevant for… (more)

Subjects/Keywords: Derived category of coherent sheaves; tilting sheaf; Brauer group; Brauer-Severi schemes; arithmetic toric varieities; descent; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, Y. (2014). Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Thesis, University of Western Ontario. Accessed December 11, 2019. https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Web. 11 Dec 2019.

Vancouver:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Internet] [Thesis]. University of Western Ontario; 2014. [cited 2019 Dec 11]. Available from: https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Thesis]. University of Western Ontario; 2014. Available from: https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

28. Ren, Owen. Moduli spaces of vector bundles on toric surfaces .

Degree: Mathematics and Statistics, Queens University

 The moduli spaces parametrizing isomorphism classes of vector bundles are poorly understood. For certain choices of the first Chern class and a suitable second Chern… (more)

Subjects/Keywords: Mathematics; Moduli spaces; Algebraic geometry; Toric surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren, O. (n.d.). Moduli spaces of vector bundles on toric surfaces . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Thesis, Queens University. Accessed December 11, 2019. http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren, Owen. “Moduli spaces of vector bundles on toric surfaces .” Web. 11 Dec 2019.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Internet] [Thesis]. Queens University; [cited 2019 Dec 11]. Available from: http://hdl.handle.net/1974/24812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

Council of Science Editors:

Ren O. Moduli spaces of vector bundles on toric surfaces . [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/24812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

29. Yao, Yuan, active 2013. A criterion for toric varieties.

Degree: PhD, Mathematics, 2013, University of Texas – Austin

 We consider the pair of a smooth complex projective variety together with an anti-canonical simple normal crossing divisor (we call it "log Calabi- Yau"). Standard… (more)

Subjects/Keywords: Toric variety; Birational geometry; Mirror symmetry

toric variety and D its toric boundary. In this case we have a well-behaved Landau-Ginzburg… …x29; from being toric? And eventually, how does this help to study the mirror symmetry for… …corresponding toric variety, and proved it was an isomorphism. This provides a torus fibration from Y… …x29; + rank(Pic(Y )) − n, which matches the number of non-toric blowups… …performed upon a toric pair. Then the theorem suggests that the charge somehow measures the… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yao, Yuan, a. 2. (2013). A criterion for toric varieties. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21178

Chicago Manual of Style (16th Edition):

Yao, Yuan, active 2013. “A criterion for toric varieties.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed December 11, 2019. http://hdl.handle.net/2152/21178.

MLA Handbook (7th Edition):

Yao, Yuan, active 2013. “A criterion for toric varieties.” 2013. Web. 11 Dec 2019.

Vancouver:

Yao, Yuan a2. A criterion for toric varieties. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2019 Dec 11]. Available from: http://hdl.handle.net/2152/21178.

Council of Science Editors:

Yao, Yuan a2. A criterion for toric varieties. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21178


Freie Universität Berlin

30. Vollmert, Robert. Einige Deformationen von T-Varietäten.

Degree: 2012, Freie Universität Berlin

 Diese Arbeit befasst sich mit Deformationen normaler affiner Varietäten mit Toruswirkung. Solche Varietäten lassen sich durch polyedrische Divisoren beschreiben, wie von Altmann und Hausen gezeigt… (more)

Subjects/Keywords: algebraic geometry; toric varieties; deformation theory; T-varieties; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vollmert, R. (2012). Einige Deformationen von T-Varietäten. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-4669

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vollmert, Robert. “Einige Deformationen von T-Varietäten.” 2012. Thesis, Freie Universität Berlin. Accessed December 11, 2019. http://dx.doi.org/10.17169/refubium-4669.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vollmert, Robert. “Einige Deformationen von T-Varietäten.” 2012. Web. 11 Dec 2019.

Vancouver:

Vollmert R. Einige Deformationen von T-Varietäten. [Internet] [Thesis]. Freie Universität Berlin; 2012. [cited 2019 Dec 11]. Available from: http://dx.doi.org/10.17169/refubium-4669.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vollmert R. Einige Deformationen von T-Varietäten. [Thesis]. Freie Universität Berlin; 2012. Available from: http://dx.doi.org/10.17169/refubium-4669

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.