Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Toric ideals). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Minnesota

1. Csar, Sebastian Alexander. Root and weight semigroup rings for signed posets.

Degree: PhD, Mathematics, 2014, University of Minnesota

 We consider a pair of semigroups associated to a signed poset, called the root semigroup and the weight semigroup, and their semigroup rings, \Rprt and… (more)

Subjects/Keywords: Semigroups; Signed posets; Toric ideals; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Csar, S. A. (2014). Root and weight semigroup rings for signed posets. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/167039

Chicago Manual of Style (16th Edition):

Csar, Sebastian Alexander. “Root and weight semigroup rings for signed posets.” 2014. Doctoral Dissertation, University of Minnesota. Accessed October 25, 2020. http://hdl.handle.net/11299/167039.

MLA Handbook (7th Edition):

Csar, Sebastian Alexander. “Root and weight semigroup rings for signed posets.” 2014. Web. 25 Oct 2020.

Vancouver:

Csar SA. Root and weight semigroup rings for signed posets. [Internet] [Doctoral dissertation]. University of Minnesota; 2014. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/11299/167039.

Council of Science Editors:

Csar SA. Root and weight semigroup rings for signed posets. [Doctoral Dissertation]. University of Minnesota; 2014. Available from: http://hdl.handle.net/11299/167039


University of Illinois – Chicago

2. Gross, Elizabeth. Algebraic Complexity in Statistics using Combinatorial and Tensor Methods.

Degree: 2013, University of Illinois – Chicago

 Within the framework of algebraic statistics, this work explores several statistical models, e.g. toric models, phylogenetic models, and variance components models, and focuses on the… (more)

Subjects/Keywords: algebraic statistics; phylogenetic ideals; toric ideals; Markov bases; indispensable binomials; maximum likelihood degree

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gross, E. (2013). Algebraic Complexity in Statistics using Combinatorial and Tensor Methods. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10354

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gross, Elizabeth. “Algebraic Complexity in Statistics using Combinatorial and Tensor Methods.” 2013. Thesis, University of Illinois – Chicago. Accessed October 25, 2020. http://hdl.handle.net/10027/10354.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gross, Elizabeth. “Algebraic Complexity in Statistics using Combinatorial and Tensor Methods.” 2013. Web. 25 Oct 2020.

Vancouver:

Gross E. Algebraic Complexity in Statistics using Combinatorial and Tensor Methods. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10027/10354.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gross E. Algebraic Complexity in Statistics using Combinatorial and Tensor Methods. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10354

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


San Jose State University

3. Obatake, Nida K. Drawing place field diagrams of neural codes using toric ideals.

Degree: MS, Mathematics and Statistics, 2016, San Jose State University

  A neural code is a collection of codewords (0-1 vectors) of a given length n; it captures the co-firing patterns of a set of… (more)

Subjects/Keywords: Algebra; Algebraic Geometry; Information Visualization; Neural Codes; Toric Ideals

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Obatake, N. K. (2016). Drawing place field diagrams of neural codes using toric ideals. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733

Chicago Manual of Style (16th Edition):

Obatake, Nida K. “Drawing place field diagrams of neural codes using toric ideals.” 2016. Masters Thesis, San Jose State University. Accessed October 25, 2020. https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733.

MLA Handbook (7th Edition):

Obatake, Nida K. “Drawing place field diagrams of neural codes using toric ideals.” 2016. Web. 25 Oct 2020.

Vancouver:

Obatake NK. Drawing place field diagrams of neural codes using toric ideals. [Internet] [Masters thesis]. San Jose State University; 2016. [cited 2020 Oct 25]. Available from: https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733.

Council of Science Editors:

Obatake NK. Drawing place field diagrams of neural codes using toric ideals. [Masters Thesis]. San Jose State University; 2016. Available from: https://doi.org/10.31979/etd.3jr5-hu8g ; https://scholarworks.sjsu.edu/etd_theses/4733

4. Τατάκης, Χρήστος. Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα.

Degree: 2011, University of Ioannina; Πανεπιστήμιο Ιωαννίνων

develop. In the second chapter we characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal… (more)

Subjects/Keywords: Τορικά ιδεώδη; Θεωρία γραφημάτων; Τορικά ιδεώδη γραφημάτων; Συνδυαστική μεταθετική άλγεβρα; Toric ideals; Graph theory; Toric ideals of graphs; Combinatorics and commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Τατάκης, . . (2011). Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα. (Thesis). University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Retrieved from http://hdl.handle.net/10442/hedi/26140

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Τατάκης, Χρήστος. “Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα.” 2011. Thesis, University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Accessed October 25, 2020. http://hdl.handle.net/10442/hedi/26140.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Τατάκης, Χρήστος. “Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα.” 2011. Web. 25 Oct 2020.

Vancouver:

Τατάκης . Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα. [Internet] [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2011. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10442/hedi/26140.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Τατάκης . Τορικά ιδεώδη και θεωρία γραφημάτων στη συνδυαστική μεταθετική άλγεβρα. [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2011. Available from: http://hdl.handle.net/10442/hedi/26140

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Barrera III, Roberto. Local Cohomology: Combinatorics and D-Modules.

Degree: PhD, Mathematics, 2017, Texas A&M University

 In this thesis, we study combinatorial and D-module theoretic aspects of local cohomology. Viewing local cohomology from the point of view of A-hypergeometric systems, the… (more)

Subjects/Keywords: local cohomology; D-modules; toric ideals

…systems have an associated toric ideal in the polynomial ring. Toric ideals have a rich… …between quasidegrees of the non-top local cohomology modules of toric ideals and the parameters… …ISOMORPHISM OF LOCAL DUALITY FOR CODIMENSION 2 TORIC IDEALS 4.1 Introduction Let S = k[x1… …ideals characterize Cohen-Macaulayness [12]. Theorem 4.1.1. A toric ideal IA is not… …quadrants of Z2 . We do not consider Cohen-Macaulay codimension 2 toric ideals because their local… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barrera III, R. (2017). Local Cohomology: Combinatorics and D-Modules. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/166092

Chicago Manual of Style (16th Edition):

Barrera III, Roberto. “Local Cohomology: Combinatorics and D-Modules.” 2017. Doctoral Dissertation, Texas A&M University. Accessed October 25, 2020. http://hdl.handle.net/1969.1/166092.

MLA Handbook (7th Edition):

Barrera III, Roberto. “Local Cohomology: Combinatorics and D-Modules.” 2017. Web. 25 Oct 2020.

Vancouver:

Barrera III R. Local Cohomology: Combinatorics and D-Modules. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1969.1/166092.

Council of Science Editors:

Barrera III R. Local Cohomology: Combinatorics and D-Modules. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/166092


University of Kentucky

6. Maraj, Aida. Algebraic and Geometric Properties of Hierarchical Models.

Degree: 2020, University of Kentucky

 In this dissertation filtrations of ideals arising from hierarchical models in statistics related by a group action are are studied. These filtrations lead to ideals(more)

Subjects/Keywords: hierarchical models; toric ideals; Markov bases; stabilization; equivariant Hilbert series; polyhedral geometry; Algebra; Algebraic Geometry; Discrete Mathematics and Combinatorics; Statistics and Probability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maraj, A. (2020). Algebraic and Geometric Properties of Hierarchical Models. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/71

Chicago Manual of Style (16th Edition):

Maraj, Aida. “Algebraic and Geometric Properties of Hierarchical Models.” 2020. Doctoral Dissertation, University of Kentucky. Accessed October 25, 2020. https://uknowledge.uky.edu/math_etds/71.

MLA Handbook (7th Edition):

Maraj, Aida. “Algebraic and Geometric Properties of Hierarchical Models.” 2020. Web. 25 Oct 2020.

Vancouver:

Maraj A. Algebraic and Geometric Properties of Hierarchical Models. [Internet] [Doctoral dissertation]. University of Kentucky; 2020. [cited 2020 Oct 25]. Available from: https://uknowledge.uky.edu/math_etds/71.

Council of Science Editors:

Maraj A. Algebraic and Geometric Properties of Hierarchical Models. [Doctoral Dissertation]. University of Kentucky; 2020. Available from: https://uknowledge.uky.edu/math_etds/71


National University of Ireland – Galway

7. Burke, Isaac Zebulun. Characterising bases of pure difference ideals .

Degree: 2020, National University of Ireland – Galway

 In this thesis, we study the basis sets of pure difference ideals, that is, ideals that are generated by differences of monic monomials. We examine… (more)

Subjects/Keywords: commutative algebra; algebraic statistics; universal Gröbner basis; Graver basis; binomial ideals; scaled toric varieties; maximum likelihood degree; Mathematics, Statistics, and Applied Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Burke, I. Z. (2020). Characterising bases of pure difference ideals . (Thesis). National University of Ireland – Galway. Retrieved from http://hdl.handle.net/10379/16183

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Burke, Isaac Zebulun. “Characterising bases of pure difference ideals .” 2020. Thesis, National University of Ireland – Galway. Accessed October 25, 2020. http://hdl.handle.net/10379/16183.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Burke, Isaac Zebulun. “Characterising bases of pure difference ideals .” 2020. Web. 25 Oct 2020.

Vancouver:

Burke IZ. Characterising bases of pure difference ideals . [Internet] [Thesis]. National University of Ireland – Galway; 2020. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10379/16183.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Burke IZ. Characterising bases of pure difference ideals . [Thesis]. National University of Ireland – Galway; 2020. Available from: http://hdl.handle.net/10379/16183

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

8. Howald, Jason Andrew. Calculations with multiplier ideals.

Degree: PhD, Pure Sciences, 2001, University of Michigan

 In this thesis, we present some results which allow for the explicit calculation of multiplier ideals. Specifically, we compute the multiplier ideal of a monomial… (more)

Subjects/Keywords: Algebraic Geometry; Calculations; Log Canonical Threshold; Log-canonical Thresholds; Monomial Ideals; Multiplier Ideals; Toric Varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Howald, J. A. (2001). Calculations with multiplier ideals. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125523

Chicago Manual of Style (16th Edition):

Howald, Jason Andrew. “Calculations with multiplier ideals.” 2001. Doctoral Dissertation, University of Michigan. Accessed October 25, 2020. http://hdl.handle.net/2027.42/125523.

MLA Handbook (7th Edition):

Howald, Jason Andrew. “Calculations with multiplier ideals.” 2001. Web. 25 Oct 2020.

Vancouver:

Howald JA. Calculations with multiplier ideals. [Internet] [Doctoral dissertation]. University of Michigan; 2001. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/2027.42/125523.

Council of Science Editors:

Howald JA. Calculations with multiplier ideals. [Doctoral Dissertation]. University of Michigan; 2001. Available from: http://hdl.handle.net/2027.42/125523

.