Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(The aim of this work is to study from a signal processing point of view the use of MIMO Multiple Input Multiple Output communication systems for algorithms dedicated to wireless sensor networks We investigate energy constrained wireless sensor networks AND we focus on cluster topology of the network This topology permits for the use of MIMO communication system model First we review different aspects that characterize the wireless sensor network Then we introduce the existing strategies for energy conservation in the network The basic concepts of MIMO systems are presented in the second chapter AND numerical results are provided for evaluating the performances of MIMO techniques Of particular interest polarization diversity over rich scattering environment is studied Thereafter beamforming approach is proposed for the development of an original localization algorithm in wireless sensor network The novel algorithm is described AND performances are evaluated by simulation We determine the optimal system configuration between a pair of clusters that permits for the highest capacity to energy ratio in the fourth chapter The final chapter is devoted to sensor nodes selection in wireless sensor network The aim of using such technique is to make energy conservation in the network ). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Ben Zid, Maha. Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks.

Degree: Docteur es, Sciences et technologie industrielles, 2012, Grenoble; Ecole Nationale d'Ingénieurs de Tunis

Dans ce travail de thèse, on s'intéresse é l'emploi de techniques de traitement de signal de systèmes de communication MIMO (Multiple Input Multiple Output) pour des applications aux réseaux de capteurs sans fil. Les contraintes énergétiques de cette classe de réseau font appel à des topologies particulières et le réseau peut être perçu comme étant un ensemble de grappes de nœuds capteurs. Ceci ouvre la porte à des techniques avancées de communication de type MIMO. Dans un premier temps, les différents aspects caractérisant les réseaux de capteurs sans fil sont introduits. Puis, les efforts engagés pour optimiser la conservation de l'énergie dans ces réseaux sont résumés. Les concepts de base de systèmes MIMOs sont abordés dans le deuxième chapitre et l'exploration par voie numérique de différentes pistes de la technologie MIMO sont exposées. Nous nous intéressons à des techniques de diversité de polarisation dans le cadre de milieux de communication riches en diffuseurs. Par la suite, des méthodes de type beamforming sont proposées pour la localisation dans les réseaux de capteurs sans fil. Le nouvel algorithme de localisation est présenté et les performances sont évaluées. Nous identifions la configuration pour la communication inter-grappes qui permet pour les meilleurs compromis entre énergie et efficacité spectrale dans les réseaux de capteurs sans fil. Finalement, nous envisageons la technique de sélection de nœuds capteurs afin de réduire la consommation de l'énergie dans le réseau de capteur sans fil.

The aim of this work is to study from a signal processing point of view the use of MIMO (Multiple Input Multiple Output) communication systems for algorithms dedicated to wireless sensor networks. We investigate energy-constrained wireless sensor networks and we focus on cluster topology of the network. This topology permits for the use of MIMO communication system model. First, we review different aspects that characterize the wireless sensor network. Then, we introduce the existing strategies for energy conservation in the network. The basic concepts of MIMO systems are presented in the second chapter and numerical results are provided for evaluating the performances of MIMO techniques. Of particular interest, polarization diversity over rich scattering environment is studied. Thereafter, beamforming approach is proposed for the development of an original localization algorithm in wireless sensor network. The novel algorithm is described and performances are evaluated by simulation. We determine the optimal system configuration between a pair of clusters that permits for the highest capacity to energy ratio in the fourth chapter. The final chapter is devoted to sensor nodes selection in wireless sensor network. The aim of using such technique is to make energy conservation in the network.

Advisors/Committee Members: Raoof, Kosai (thesis director).

Subjects/Keywords: Réseaux de capteurs sans fil; MIMO; Clustering; Diversité de polarisation; Capacité; Énergie; Localisation; Beamforming; Technique de sélection; The aim of this work is to study from a signal processing point of view the use of MIMO (Multiple Input Multiple Output) communication systems for algorithms dedicated to wireless sensor networks. We investigate energy-constrained wireless sensor networks and we focus on cluster topology of the network. This topology permits for the use of MIMO communication system model. First, we review different aspects that characterize the wireless sensor network. Then, we introduce the existing strategies for energy conservation in the network. The basic concepts of MIMO systems are presented in the second chapter and numerical results are provided for evaluating the performances of MIMO techniques. Of particular interest, polarization diversity over rich scattering environment is studied. Thereafter, beamforming approach is proposed for the development of an original localization algorithm in wireless sensor network. The novel algorithm is described and performances are evaluated by simulation. We determine the optimal system configuration between a pair of clusters that permits for the highest capacity to energy ratio in the fourth chapter. The final chapter is devoted to sensor nodes selection in wireless sensor network. The aim of using such technique is to make energy conservation in the network.; MIMO; Clustering; Polarization diversity; Capacity; Energy; Localization; Beamforming; Selection technique

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ben Zid, M. (2012). Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks. (Doctoral Dissertation). Grenoble; Ecole Nationale d'Ingénieurs de Tunis. Retrieved from http://www.theses.fr/2012GRENT017

Chicago Manual of Style (16th Edition):

Ben Zid, Maha. “Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks.” 2012. Doctoral Dissertation, Grenoble; Ecole Nationale d'Ingénieurs de Tunis. Accessed June 20, 2019. http://www.theses.fr/2012GRENT017.

MLA Handbook (7th Edition):

Ben Zid, Maha. “Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks.” 2012. Web. 20 Jun 2019.

Vancouver:

Ben Zid M. Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks. [Internet] [Doctoral dissertation]. Grenoble; Ecole Nationale d'Ingénieurs de Tunis; 2012. [cited 2019 Jun 20]. Available from: http://www.theses.fr/2012GRENT017.

Council of Science Editors:

Ben Zid M. Emploi de techniques de traitement de signal MIMO pour des applications dédiées réseaux de capteurs sans fil : Adaptive optimisation of MIMO Channel for Smart sensor networks. [Doctoral Dissertation]. Grenoble; Ecole Nationale d'Ingénieurs de Tunis; 2012. Available from: http://www.theses.fr/2012GRENT017

.