Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Teichmuller space). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Manitoba

1. Akhtariiev, Mykhailo. Teichmuller space and its representation with the period mapping.

Degree: Mathematics, 2016, University of Manitoba

 In this thesis, we investigate the period mapping of Teichmuller space into the Siegel upper half space. This is constructed from integrals of a basis… (more)

Subjects/Keywords: Mathematics; Teichmuller space; Torelli space; Riemann space; Period mapping; Teichmuller theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Akhtariiev, M. (2016). Teichmuller space and its representation with the period mapping. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/31759

Chicago Manual of Style (16th Edition):

Akhtariiev, Mykhailo. “Teichmuller space and its representation with the period mapping.” 2016. Masters Thesis, University of Manitoba. Accessed December 04, 2020. http://hdl.handle.net/1993/31759.

MLA Handbook (7th Edition):

Akhtariiev, Mykhailo. “Teichmuller space and its representation with the period mapping.” 2016. Web. 04 Dec 2020.

Vancouver:

Akhtariiev M. Teichmuller space and its representation with the period mapping. [Internet] [Masters thesis]. University of Manitoba; 2016. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/1993/31759.

Council of Science Editors:

Akhtariiev M. Teichmuller space and its representation with the period mapping. [Masters Thesis]. University of Manitoba; 2016. Available from: http://hdl.handle.net/1993/31759


University of Illinois – Chicago

2. Durham, Matthew G. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.

Degree: 2014, University of Illinois – Chicago

 Let S be a surface of finite type and T(S) its Teichmuller space. In the first chapter of the thesis, we build a graph called… (more)

Subjects/Keywords: Geometric group theory; Teichmuller space; mapping class groups; Nielsen realization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Durham, M. G. (2014). The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19007

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Durham, Matthew G. “The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.” 2014. Thesis, University of Illinois – Chicago. Accessed December 04, 2020. http://hdl.handle.net/10027/19007.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Durham, Matthew G. “The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups.” 2014. Web. 04 Dec 2020.

Vancouver:

Durham MG. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10027/19007.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Durham MG. The Coarse Geometry of the Teichmuller Metric: A Quasiisometry Model and the Actions of Finite Groups. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/19007

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


UCLA

3. Chen, Xiaojing. A global Torelli theorem of projective manifolds.

Degree: Mathematics, 2014, UCLA

 This thesis has studied global Torelli problems for projective manifolds. In particular, we have focused on projective manifolds of Calabi-Yau type, which is a generalization… (more)

Subjects/Keywords: Mathematics; Calabi-Yau type manifolds; global Torelli Theorem; injectivity; period map; Teichmuller space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, X. (2014). A global Torelli theorem of projective manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/70h5p4v1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Xiaojing. “A global Torelli theorem of projective manifolds.” 2014. Thesis, UCLA. Accessed December 04, 2020. http://www.escholarship.org/uc/item/70h5p4v1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Xiaojing. “A global Torelli theorem of projective manifolds.” 2014. Web. 04 Dec 2020.

Vancouver:

Chen X. A global Torelli theorem of projective manifolds. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Dec 04]. Available from: http://www.escholarship.org/uc/item/70h5p4v1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen X. A global Torelli theorem of projective manifolds. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/70h5p4v1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

4. Mousley, Sarah C. Boundaries and hierarchically hyperbolic spaces.

Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign

 Although the hierarchically hyperbolic space boundary is a generalization of the Gromov boundary, we will show there are fundamental differences between the two. First, we… (more)

Subjects/Keywords: Teichmuller space; mapping class group; right-angled Artin group; hierarchically hyperbolic; limit set

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mousley, S. C. (2019). Boundaries and hierarchically hyperbolic spaces. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/104790

Chicago Manual of Style (16th Edition):

Mousley, Sarah C. “Boundaries and hierarchically hyperbolic spaces.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 04, 2020. http://hdl.handle.net/2142/104790.

MLA Handbook (7th Edition):

Mousley, Sarah C. “Boundaries and hierarchically hyperbolic spaces.” 2019. Web. 04 Dec 2020.

Vancouver:

Mousley SC. Boundaries and hierarchically hyperbolic spaces. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2142/104790.

Council of Science Editors:

Mousley SC. Boundaries and hierarchically hyperbolic spaces. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/104790


University of Arizona

5. Konstantinou, Panagiota. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group.

Degree: 2006, University of Arizona

 In this paper we consider the action of the mapping class group of a surface on the space of homomorphisms from the fundamental group of… (more)

Subjects/Keywords: representation varieties; mapping class group; teichmuller space; ergodic action

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Konstantinou, P. (2006). Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/193713

Chicago Manual of Style (16th Edition):

Konstantinou, Panagiota. “Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. ” 2006. Doctoral Dissertation, University of Arizona. Accessed December 04, 2020. http://hdl.handle.net/10150/193713.

MLA Handbook (7th Edition):

Konstantinou, Panagiota. “Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. ” 2006. Web. 04 Dec 2020.

Vancouver:

Konstantinou P. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10150/193713.

Council of Science Editors:

Konstantinou P. Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group. [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/193713


Kyoto University / 京都大学

6. Minamide, Arata. Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性.

Degree: 博士(理学), 2017, Kyoto University / 京都大学

新制・課程博士

甲第20158号

理博第4243号

Subjects/Keywords: indecomposability; etale fundamental group; hyperbolic curve; configuration space; Grothendieck-Teichmuller group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minamide, A. (2017). Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/225383 ; http://dx.doi.org/10.14989/doctor.k20158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Minamide, Arata. “Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性.” 2017. Thesis, Kyoto University / 京都大学. Accessed December 04, 2020. http://hdl.handle.net/2433/225383 ; http://dx.doi.org/10.14989/doctor.k20158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Minamide, Arata. “Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性.” 2017. Web. 04 Dec 2020.

Vancouver:

Minamide A. Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性. [Internet] [Thesis]. Kyoto University / 京都大学; 2017. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2433/225383 ; http://dx.doi.org/10.14989/doctor.k20158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Minamide A. Indecomposability of various profinite groups arising from hyperbolic curves : 双曲的曲線から生じる様々な副有限群の非分解性. [Thesis]. Kyoto University / 京都大学; 2017. Available from: http://hdl.handle.net/2433/225383 ; http://dx.doi.org/10.14989/doctor.k20158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University

7. Minamide, Arata. Indecomposability of various profinite groups arising from hyperbolic curves .

Degree: 2017, Kyoto University

Subjects/Keywords: indecomposability; etale fundamental group; hyperbolic curve; configuration space; Grothendieck-Teichmuller group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minamide, A. (2017). Indecomposability of various profinite groups arising from hyperbolic curves . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/225383

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Minamide, Arata. “Indecomposability of various profinite groups arising from hyperbolic curves .” 2017. Thesis, Kyoto University. Accessed December 04, 2020. http://hdl.handle.net/2433/225383.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Minamide, Arata. “Indecomposability of various profinite groups arising from hyperbolic curves .” 2017. Web. 04 Dec 2020.

Vancouver:

Minamide A. Indecomposability of various profinite groups arising from hyperbolic curves . [Internet] [Thesis]. Kyoto University; 2017. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2433/225383.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Minamide A. Indecomposability of various profinite groups arising from hyperbolic curves . [Thesis]. Kyoto University; 2017. Available from: http://hdl.handle.net/2433/225383

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Guan, Feng. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.

Degree: Mathematics, 2014, UCLA

 In this thesis, we prove that the Hodge metric completion of the Teichmuller space of polarized and marked Calabi-Yau manifolds is a complex affine manifold.… (more)

Subjects/Keywords: Mathematics; Complex Geometry; Period map; Teichmuller space; Torelli problem

…3.2 Construction of the Teichmuller space We first recall the concept of Kuranishi family… …44 5.2 Holomorphic affine structure on the Hodge metric completion space . . . . . 49… …5.3 Injectivity of the period map on the Hodge metric completion space . . . . . 52 6… …Completion space of the Teichmüller space . . . . . . . . . . . . . . . . . . . 55 6.2 Main… …Completion space of the Teichmüller space is a domain of holomorphy . . . . 58 6.4 Surjectivity… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guan, F. (2014). Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/0r10p1zm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guan, Feng. “Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.” 2014. Thesis, UCLA. Accessed December 04, 2020. http://www.escholarship.org/uc/item/0r10p1zm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guan, Feng. “Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds.” 2014. Web. 04 Dec 2020.

Vancouver:

Guan F. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Dec 04]. Available from: http://www.escholarship.org/uc/item/0r10p1zm.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guan F. Affine structure on the Teichmuller spaces and period maps for Calabi-Yau manifolds. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/0r10p1zm

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Tsai, Chia-Yen. Minimal pseudo-Anosov translation lengths on the Teichmuller space.

Degree: PhD, 0439, 2010, University of Illinois – Urbana-Champaign

 This thesis is a study of the asymptotic behavior of minimal pseudo-Anosov translation lengths on the Teichmuller space. For tori with n marked points, we… (more)

Subjects/Keywords: pseudo-Anosov; dilatation; mapping class group; Teichmuller space

TEICHMULLER SPACE 3.1 Known Results From the discussion in Section 2.2, it follows that the set L… …uller space with respect to the Teichm¨ uller metric. The set of all such logarithms is thus… …the same as the set of lengths of closed geodesics in the moduli space. In the area of… …x29; translation length in the Teichm¨ uller space, denoted lg,n . The exact values are hard… …consists of pure elements. 2.2 Teichm¨ uller space We will review some basic definitions and… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tsai, C. (2010). Minimal pseudo-Anosov translation lengths on the Teichmuller space. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/16103

Chicago Manual of Style (16th Edition):

Tsai, Chia-Yen. “Minimal pseudo-Anosov translation lengths on the Teichmuller space.” 2010. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 04, 2020. http://hdl.handle.net/2142/16103.

MLA Handbook (7th Edition):

Tsai, Chia-Yen. “Minimal pseudo-Anosov translation lengths on the Teichmuller space.” 2010. Web. 04 Dec 2020.

Vancouver:

Tsai C. Minimal pseudo-Anosov translation lengths on the Teichmuller space. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2010. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2142/16103.

Council of Science Editors:

Tsai C. Minimal pseudo-Anosov translation lengths on the Teichmuller space. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/16103

10. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

 Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική… (more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed December 04, 2020. http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 04 Dec 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.