Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Symplectic resolution). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Hilburn, Justin. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.

Degree: PhD, Department of Mathematics, 2016, University of Oregon

In this thesis I show that indecomposable projective and tilting modules in hypertoric category O are obtained by applying a variant of the geometric Jacquet functor of Emerton, Nadler, and Vilonen to certain Gel'fand-Kapranov-Zelevinsky hypergeometric systems. This proves the abelian case of a conjecture of Bullimore, Gaiotto, Dimofte, and Hilburn on the behavior of generic Dirichlet boundary conditions in 3d N=4 SUSY gauge theories. Advisors/Committee Members: Proudfoot, Nicholas (advisor).

Subjects/Keywords: 3d N=4; Boundary condition; Category O; Hypertoric; Symplectic duality; Symplectic resolution

…map πM is a conical symplectic resolution. 16 3.2. The hypertoric enveloping algebra The… …56 ix CHAPTER I INTRODUCTION Symplectic duality, as introduced by Braden, Licata… …of deformation quantization modules associated to certain pairs of symplectic cones. All… …known symplectic dual pairs arise from physics as Higgs and Coulomb branches of the moduli… …theory of symplectic duality and the physical theory of 3d mirror symmetry, as introduced by… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hilburn, J. (2016). GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/20456

Chicago Manual of Style (16th Edition):

Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Doctoral Dissertation, University of Oregon. Accessed January 16, 2021. http://hdl.handle.net/1794/20456.

MLA Handbook (7th Edition):

Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Web. 16 Jan 2021.

Vancouver:

Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Internet] [Doctoral dissertation]. University of Oregon; 2016. [cited 2021 Jan 16]. Available from: http://hdl.handle.net/1794/20456.

Council of Science Editors:

Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Doctoral Dissertation]. University of Oregon; 2016. Available from: http://hdl.handle.net/1794/20456

2. McBreen, Michael Ben. Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians .

Degree: PhD, 2013, Princeton University

This thesis compares two geometric constructions of a Yangian, due to Varagnolo and Nakajima on the one hand and Maulik and Okounkov on the other. It also, separately, computes the quantum cohomology of smooth hypertoric varieties, and nds a mirror formula for their quantum connection. It contains brief introductions to the background material for both problems. Advisors/Committee Members: Okounkov, Andrei (advisor).

Subjects/Keywords: Mirror Symmetry; Quantum Cohomology; Quiver variety; Symplectic Resolution; Yangian

symplectic resolution is a holomorphic symplectic variety X, such that the canonical map π : X → X0… …much confusion. When θ is generic, Mθ,0 (v, w) is thus a symplectic resolution if… …symplectic resolution X, such that T acts symplectically and C∗ scales the symplectic form by… …of the symplectic resolution. Note that leaf (Z)|Z = ±εZ . 5.2.4 Definition of… …multiplication in symplectic resolutions . . . . . . . . . . . 42 8 Hypertoric varieties 45 8.0.1… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McBreen, M. B. (2013). Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01s1784k857

Chicago Manual of Style (16th Edition):

McBreen, Michael Ben. “Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians .” 2013. Doctoral Dissertation, Princeton University. Accessed January 16, 2021. http://arks.princeton.edu/ark:/88435/dsp01s1784k857.

MLA Handbook (7th Edition):

McBreen, Michael Ben. “Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians .” 2013. Web. 16 Jan 2021.

Vancouver:

McBreen MB. Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Jan 16]. Available from: http://arks.princeton.edu/ark:/88435/dsp01s1784k857.

Council of Science Editors:

McBreen MB. Quantum Cohomology of Hypertoric Varieties and Geometric Representations of Yangians . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01s1784k857

3. Terpereau, Ronan. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.

Degree: Docteur es, Mathématiques, 2012, Université de Grenoble

Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu-1(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu-1(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.

Let W be an affine variety equipped with an action of a reductive group G. The invariant Hilbert scheme is a moduli space which classifies the G-stable closed subschemes of W such that the affine algebra is the direct sum of simple G-modules with previously fixed finite multiplicities. In this thesis, we first study the invariant Hilbert scheme, denoted H. It parametrizes the GL(V)-stable closed subschemes Z of W=n1 V oplus n2 V^* such that k[Z] is isomorphic to the regular representation of GL(V) as GL(V)-module. If dim(V)<3, we show that H is a smooth variety, so that the Hilbert-Chow morphism gamma: H -> W//G is a resolution of singularities of the quotient W//G. However, if dim(V)=3, we show that H is singular. When dim(V)<3, we describe H by equations and also as the total space of a homogeneous vector bundle over the product of two Grassmannians. Then we consider the symplectic setting by letting n1=n2 and replacing W by the zero fiber of the moment map mu: W -> End(V). We study the invariant Hilbert scheme H' which parametrizes the subschemes included in mu-1(0). We show that H' is always reducible, but that its main component Hp' is smooth if dim(V)<3. In this case, the Hilbert-Chow morphism is a resolution of singularities (sometimes a symplectic one) of the quotient…

Advisors/Committee Members: Brion, Michel (thesis director).

Subjects/Keywords: Schéma de Hilbert invariant; Résolution des singularités; Théorie des invariants; Orbite nilpotente; Résolutions symplectiques; Variété déterminantielle; Invariant Hilbert scheme; Resolution of singularities; Invariants theory; Nilpotent orbit; Symplectic resolution; Determinantal variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Terpereau, R. (2012). Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENM095

Chicago Manual of Style (16th Edition):

Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed January 16, 2021. http://www.theses.fr/2012GRENM095.

MLA Handbook (7th Edition):

Terpereau, Ronan. “Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory.” 2012. Web. 16 Jan 2021.

Vancouver:

Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2021 Jan 16]. Available from: http://www.theses.fr/2012GRENM095.

Council of Science Editors:

Terpereau R. Schémas de Hilbert invariants et théorie classique des invariants : Invariant Hilbert Schemes and classical invariant theory. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENM095

.