Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Symplectic maps). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Otago

1. Peter, Ralf. Numerical studies of geometric partial differential equations with symplectic methods .

Degree: 2012, University of Otago

 In this thesis the (2+1) dimensional wave map equations with the 2- sphere as target manifold is solved, using numerical methods. The focus will be… (more)

Subjects/Keywords: wave maps; symplectic integrators; partial differential equations; finite differences; numerical methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peter, R. (2012). Numerical studies of geometric partial differential equations with symplectic methods . (Doctoral Dissertation). University of Otago. Retrieved from http://hdl.handle.net/10523/2426

Chicago Manual of Style (16th Edition):

Peter, Ralf. “Numerical studies of geometric partial differential equations with symplectic methods .” 2012. Doctoral Dissertation, University of Otago. Accessed October 30, 2020. http://hdl.handle.net/10523/2426.

MLA Handbook (7th Edition):

Peter, Ralf. “Numerical studies of geometric partial differential equations with symplectic methods .” 2012. Web. 30 Oct 2020.

Vancouver:

Peter R. Numerical studies of geometric partial differential equations with symplectic methods . [Internet] [Doctoral dissertation]. University of Otago; 2012. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/10523/2426.

Council of Science Editors:

Peter R. Numerical studies of geometric partial differential equations with symplectic methods . [Doctoral Dissertation]. University of Otago; 2012. Available from: http://hdl.handle.net/10523/2426

2. Πεταλάς, Ιωάννης. Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.

Degree: 2008, University of Patras

Το κύριο στοιχείο της διατριβής είναι οι Εξελικτικοί Αλγόριθμοι. Στο πρώτο μέρος παρουσιάζονται οι Μιμιδικοί Αλγόριθμοι. Οι Μιμιδικοί Αλγόριθμοι είναι υβριδικά σχήματα που συνδυάζουν τους… (more)

Subjects/Keywords: Αριθμητική βελτιστοποίηση; Εξελικτικοί αλγόριθμοι; Μιμιδικοί αλγόριθμοι; Συμπλεκτικές απεικονίσεις; Περιοδικές τροχιές; 511.8; Numerical optimization; Evolutionary algorithms; Memetic algorithms; Symplectic maps; Periodic orbits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Πεταλάς, . (2008). Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. (Doctoral Dissertation). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/942

Chicago Manual of Style (16th Edition):

Πεταλάς, Ιωάννης. “Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.” 2008. Doctoral Dissertation, University of Patras. Accessed October 30, 2020. http://nemertes.lis.upatras.gr/jspui/handle/10889/942.

MLA Handbook (7th Edition):

Πεταλάς, Ιωάννης. “Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.” 2008. Web. 30 Oct 2020.

Vancouver:

Πεταλάς . Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. [Internet] [Doctoral dissertation]. University of Patras; 2008. [cited 2020 Oct 30]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/942.

Council of Science Editors:

Πεταλάς . Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. [Doctoral Dissertation]. University of Patras; 2008. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/942


Universidade do Rio Grande do Sul

3. Ferrari, Guilherme Gonçalves. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.

Degree: 2015, Universidade do Rio Grande do Sul

Mapas simpléticos são bem conhecidos por preservarem o volume do espaço de fase em dinâmica Hamiltoniana e são particularmente apropriados para problemas que requerem longos… (more)

Subjects/Keywords: Astrofisica; Stellar dynamics; Computação astronômica; N-body simulations; Integração numérica; Symplectic maps; Numerical integration; Sistemas hamiltonianos; Simulação computacional; GPGPU; Ondas gravitacionais; Dinamica estelar

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferrari, G. G. (2015). Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/127985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferrari, Guilherme Gonçalves. “Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.” 2015. Thesis, Universidade do Rio Grande do Sul. Accessed October 30, 2020. http://hdl.handle.net/10183/127985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferrari, Guilherme Gonçalves. “Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.” 2015. Web. 30 Oct 2020.

Vancouver:

Ferrari GG. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2015. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/10183/127985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrari GG. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. [Thesis]. Universidade do Rio Grande do Sul; 2015. Available from: http://hdl.handle.net/10183/127985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Blacker, Casey Alexander. The Moduli Space of Flat Connections over Higher Dimensional Manifolds.

Degree: 2018, University of California – eScholarship, University of California

 Let M be a smooth manifold of dimension at least 3, let G be a compact Lie group, and let P be a G-principal bundle… (more)

Subjects/Keywords: Mathematics; differential geometry; gauge theory; moment maps; symplectic geometry

…the moduli space M(P ) of flat connections on P as a generalized symplectic… …Compute the symplectic volume of the moduli space MG (M ) of all flat Gconnections on… …is to consider a natural Ω2 (M )/B 2 (M )-valued symplectic form ω on A… …symplectic geometry. In addition to its applications to the moduli space of flat connections, we… …show that the vector-valued symplectic formalism has a rich structure that does not always… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Blacker, C. A. (2018). The Moduli Space of Flat Connections over Higher Dimensional Manifolds. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/0535z0rb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Thesis, University of California – eScholarship, University of California. Accessed October 30, 2020. http://www.escholarship.org/uc/item/0535z0rb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Web. 30 Oct 2020.

Vancouver:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Internet] [Thesis]. University of California – eScholarship, University of California; 2018. [cited 2020 Oct 30]. Available from: http://www.escholarship.org/uc/item/0535z0rb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Thesis]. University of California – eScholarship, University of California; 2018. Available from: http://www.escholarship.org/uc/item/0535z0rb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Maryland

5. Mitchell, Chad Eugene. Calculation of Realistic Charged-Particle Transfer Maps.

Degree: Physics, 2007, University of Maryland

 The study and computation of nonlinear charged-particle transfer maps is fundamental to understanding single-particle beam dynamics in accelerator devices. Transfer maps for individual elements of… (more)

Subjects/Keywords: Physics, Fluid and Plasma; Physics, Electricity and Magnetism; Physics, Elementary Particles and High Energy; nonlinear dynamics; symplectic; transfer maps; accelerator; surface data; wiggler

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mitchell, C. E. (2007). Calculation of Realistic Charged-Particle Transfer Maps. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/7631

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mitchell, Chad Eugene. “Calculation of Realistic Charged-Particle Transfer Maps.” 2007. Thesis, University of Maryland. Accessed October 30, 2020. http://hdl.handle.net/1903/7631.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mitchell, Chad Eugene. “Calculation of Realistic Charged-Particle Transfer Maps.” 2007. Web. 30 Oct 2020.

Vancouver:

Mitchell CE. Calculation of Realistic Charged-Particle Transfer Maps. [Internet] [Thesis]. University of Maryland; 2007. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/1903/7631.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mitchell CE. Calculation of Realistic Charged-Particle Transfer Maps. [Thesis]. University of Maryland; 2007. Available from: http://hdl.handle.net/1903/7631

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Πεταλάς, Ιωάννης. Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.

Degree: 2008, University of Patras; Πανεπιστήμιο Πατρών

Subjects/Keywords: Αριθμητική βελτιστοποίηση; Εξελικτικοί αλγόριθμοι; Μιμιδικοί αλγόριθμοι; Συμπλεκτικές απεικονίσεις; Συντονισμοί; Περιοδικές τροχιές; Numerical optimization; Evolutionary algorithms; Memetic algorithms; Symplectic maps; Resonances; Periodic orbits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Πεταλάς, . . (2008). Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. (Thesis). University of Patras; Πανεπιστήμιο Πατρών. Retrieved from http://hdl.handle.net/10442/hedi/18198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Πεταλάς, Ιωάννης. “Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.” 2008. Thesis, University of Patras; Πανεπιστήμιο Πατρών. Accessed October 30, 2020. http://hdl.handle.net/10442/hedi/18198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Πεταλάς, Ιωάννης. “Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική.” 2008. Web. 30 Oct 2020.

Vancouver:

Πεταλάς . Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. [Internet] [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2008. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/10442/hedi/18198.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Πεταλάς . Μιμιδικοί και εξελικτικοί αλγόριθμοι στην αριθμητική βελτιστοποίηση και στη μη γραμμική δυναμική. [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2008. Available from: http://hdl.handle.net/10442/hedi/18198

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.