Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Symplectic manifolds). Showing records 1 – 30 of 47 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


Rutgers University

1. Schultz, Douglas, 1986-. Lagrangian Floer theory in symplectic fibrations.

Degree: PhD, Mathematics, 2016, Rutgers University

Consider a fibration of compact symplectic manifolds F → E → B with a compatible symplectic form on E, and an induced fibration of Lagrangian… (more)

Subjects/Keywords: Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schultz, Douglas, 1. (2016). Lagrangian Floer theory in symplectic fibrations. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/55679/

Chicago Manual of Style (16th Edition):

Schultz, Douglas, 1986-. “Lagrangian Floer theory in symplectic fibrations.” 2016. Doctoral Dissertation, Rutgers University. Accessed November 29, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/55679/.

MLA Handbook (7th Edition):

Schultz, Douglas, 1986-. “Lagrangian Floer theory in symplectic fibrations.” 2016. Web. 29 Nov 2020.

Vancouver:

Schultz, Douglas 1. Lagrangian Floer theory in symplectic fibrations. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2020 Nov 29]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/55679/.

Council of Science Editors:

Schultz, Douglas 1. Lagrangian Floer theory in symplectic fibrations. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/55679/


Michigan State University

2. Hays, Christopher. Constructing symplectic 4-manifolds.

Degree: 2013, Michigan State University

Thesis Ph. D. Michigan State University. Mathematics 2013.

This thesis introduces a new technique for constructing symplectic4-manifolds, generalizing the 3- and 4-fold sums introduced bySymington,… (more)

Subjects/Keywords: Symplectic manifolds; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hays, C. (2013). Constructing symplectic 4-manifolds. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:2066

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hays, Christopher. “Constructing symplectic 4-manifolds.” 2013. Thesis, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:2066.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hays, Christopher. “Constructing symplectic 4-manifolds.” 2013. Web. 29 Nov 2020.

Vancouver:

Hays C. Constructing symplectic 4-manifolds. [Internet] [Thesis]. Michigan State University; 2013. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:2066.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hays C. Constructing symplectic 4-manifolds. [Thesis]. Michigan State University; 2013. Available from: http://etd.lib.msu.edu/islandora/object/etd:2066

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

3. Draghici, Tedi C. Special metrics on symplectic manifolds.

Degree: PhD, Department of Mathematics, 1997, Michigan State University

Subjects/Keywords: Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Draghici, T. C. (1997). Special metrics on symplectic manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:26653

Chicago Manual of Style (16th Edition):

Draghici, Tedi C. “Special metrics on symplectic manifolds.” 1997. Doctoral Dissertation, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:26653.

MLA Handbook (7th Edition):

Draghici, Tedi C. “Special metrics on symplectic manifolds.” 1997. Web. 29 Nov 2020.

Vancouver:

Draghici TC. Special metrics on symplectic manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:26653.

Council of Science Editors:

Draghici TC. Special metrics on symplectic manifolds. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:26653


University of Minnesota

4. Sakalli, Sumeyra. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.

Degree: PhD, Mathematics, 2018, University of Minnesota

 The focus of this thesis is twofold. First one is the geography problem of symplectic and smooth 4-manifolds with nonnegative signatures. We construct new non-spin,… (more)

Subjects/Keywords: Symplectic topology; 4-manifolds; Exotic Structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sakalli, S. (2018). New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201114

Chicago Manual of Style (16th Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Doctoral Dissertation, University of Minnesota. Accessed November 29, 2020. http://hdl.handle.net/11299/201114.

MLA Handbook (7th Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Web. 29 Nov 2020.

Vancouver:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11299/201114.

Council of Science Editors:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201114


Michigan State University

5. Bergmann, Jens von. Pseudo-holomorphic maps in folded symplectic manifolds.

Degree: PhD, Department of Mathematics, 2005, Michigan State University

Subjects/Keywords: Holomorphic mappings; Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bergmann, J. v. (2005). Pseudo-holomorphic maps in folded symplectic manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:33651

Chicago Manual of Style (16th Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Doctoral Dissertation, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:33651.

MLA Handbook (7th Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Web. 29 Nov 2020.

Vancouver:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2005. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651.

Council of Science Editors:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Doctoral Dissertation]. Michigan State University; 2005. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651


University of Illinois – Urbana-Champaign

6. Hockensmith, Daniel Lawrence. A classification of toric, folded-symplectic manifolds.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

 Given a G-toric, folded-symplectic manifold with co-orientable folding hypersurface, we show that its orbit space is naturally a manifold with corners W equipped with a… (more)

Subjects/Keywords: folded-symplectic; toric; Delzant; origami manifolds; classification; completely integrable system

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hockensmith, D. L. (2015). A classification of toric, folded-symplectic manifolds. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/88015

Chicago Manual of Style (16th Edition):

Hockensmith, Daniel Lawrence. “A classification of toric, folded-symplectic manifolds.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed November 29, 2020. http://hdl.handle.net/2142/88015.

MLA Handbook (7th Edition):

Hockensmith, Daniel Lawrence. “A classification of toric, folded-symplectic manifolds.” 2015. Web. 29 Nov 2020.

Vancouver:

Hockensmith DL. A classification of toric, folded-symplectic manifolds. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2142/88015.

Council of Science Editors:

Hockensmith DL. A classification of toric, folded-symplectic manifolds. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/88015

7. Villatoro, Joel David. Stacks in Poisson geometry.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 This thesis is divided into four chapters. The first chapter discusses the relationship between stacks on a site and groupoids internal to the site. It… (more)

Subjects/Keywords: Stacks; Differential Manifolds; Poisson Manifolds; Symplectic Manifolds.

…up to Morita equivalence, for a special class of Poisson manifolds called b-symplectic. We… …x28;possibly singular) foliation of the manifold by pre-symplectic manifolds. Although… …behavior. The category Poisson manifolds is rather poorly behaved and a symplectic groupoid is… …up to Morita equivalence, a special class of Poisson manifolds called b-symplectic (or… …singularity along a prescribed hypersurface. The relative tameness of b-symplectic manifolds means… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Villatoro, J. D. (2018). Stacks in Poisson geometry. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101537

Chicago Manual of Style (16th Edition):

Villatoro, Joel David. “Stacks in Poisson geometry.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed November 29, 2020. http://hdl.handle.net/2142/101537.

MLA Handbook (7th Edition):

Villatoro, Joel David. “Stacks in Poisson geometry.” 2018. Web. 29 Nov 2020.

Vancouver:

Villatoro JD. Stacks in Poisson geometry. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2142/101537.

Council of Science Editors:

Villatoro JD. Stacks in Poisson geometry. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101537


Michigan State University

8. Baykur, Refik İnanç. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.

Degree: PhD, Department of Mathematics, 2007, Michigan State University

Subjects/Keywords: Symplectic manifolds; Four-manifolds (Topology); Invariant manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baykur, R. I. (2007). Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38642

Chicago Manual of Style (16th Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Doctoral Dissertation, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:38642.

MLA Handbook (7th Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Web. 29 Nov 2020.

Vancouver:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2007. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642.

Council of Science Editors:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Doctoral Dissertation]. Michigan State University; 2007. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642


Indian Institute of Science

9. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

 The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the… (more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285

Chicago Manual of Style (16th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed November 29, 2020. http://etd.iisc.ac.in/handle/2005/2285.

MLA Handbook (7th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 29 Nov 2020.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2020 Nov 29]. Available from: http://etd.iisc.ac.in/handle/2005/2285.

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285


Northeastern University

10. Gamse, Elisheva Adina. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

 In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure… (more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed November 29, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 29 Nov 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

11. Hoai, Bich Thuan Vong. On Symplectic Invariants Associated to Zoll Manifolds.

Degree: PhD, Mathematics, 2014, University of Michigan

 In this thesis, we provide a partial classification for M. Audin’s polarized symplectic manifolds, which are smooth symplectic manifolds endowed with a Morse-Bott function having… (more)

Subjects/Keywords: Zoll Manifolds; Polarized Symplectic Manifolds; Mathematics; Science

…ABSTRACT On Symplectic Invariants Associated to Zoll Manifolds by Bich T. Hoai Chair… …polarized symplectic manifolds, which are smooth symplectic manifolds endowed with a MorseBott… …polarized symplectic manifolds introduced by Audin in [2] and [3], which are… …polarized symplectic manifolds, are defined in Chapter 3, and some known examples are given… …symplectic manifolds contain a CROSS as the minimal submanifold?” There are partial results in this… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hoai, B. T. V. (2014). On Symplectic Invariants Associated to Zoll Manifolds. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/108954

Chicago Manual of Style (16th Edition):

Hoai, Bich Thuan Vong. “On Symplectic Invariants Associated to Zoll Manifolds.” 2014. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/108954.

MLA Handbook (7th Edition):

Hoai, Bich Thuan Vong. “On Symplectic Invariants Associated to Zoll Manifolds.” 2014. Web. 29 Nov 2020.

Vancouver:

Hoai BTV. On Symplectic Invariants Associated to Zoll Manifolds. [Internet] [Doctoral dissertation]. University of Michigan; 2014. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/108954.

Council of Science Editors:

Hoai BTV. On Symplectic Invariants Associated to Zoll Manifolds. [Doctoral Dissertation]. University of Michigan; 2014. Available from: http://hdl.handle.net/2027.42/108954

12. Morton, Daniel. GKM manifolds with low Betti numbers.

Degree: PhD, 0439, 2012, University of Illinois – Urbana-Champaign

 A GKM manifold is a symplectic manifold with a torus action such that the fixed points are isolated and the isotropy weights at the fixed… (more)

Subjects/Keywords: GKM Manifolds; GKM Graphs; Symplectic Geometry; Symplectic Manifolds; Torus Actions

…x5D;. Classification becomes harder in the case of 2n-dimensional symplectic manifolds with… …in some of the same ways that we use polytopes to study symplectic toric manifolds… …x29; → H ∗ (M ) is a surjection. That symplectic manifolds with Hamiltonian torus… …This is well-defined since all symplectic manifolds have almost complex structures and the… …symplectic manifolds. There is also a way to define abstract GKM graphs without any notion of GKM… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morton, D. (2012). GKM manifolds with low Betti numbers. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/29636

Chicago Manual of Style (16th Edition):

Morton, Daniel. “GKM manifolds with low Betti numbers.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed November 29, 2020. http://hdl.handle.net/2142/29636.

MLA Handbook (7th Edition):

Morton, Daniel. “GKM manifolds with low Betti numbers.” 2012. Web. 29 Nov 2020.

Vancouver:

Morton D. GKM manifolds with low Betti numbers. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2142/29636.

Council of Science Editors:

Morton D. GKM manifolds with low Betti numbers. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/29636


University of Michigan

13. Korpas, Levente. Quantization of symplectic cobordisms.

Degree: PhD, Pure Sciences, 1999, University of Michigan

 In this work we construct a unitary operator acting between Spin c quantizations of compact integral symplectic manifolds which are symplectically cobordant. The construction is… (more)

Subjects/Keywords: Cobordisms; Dirac Operators; Quantization; Symplectic Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Korpas, L. (1999). Quantization of symplectic cobordisms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131922

Chicago Manual of Style (16th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/131922.

MLA Handbook (7th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Web. 29 Nov 2020.

Vancouver:

Korpas L. Quantization of symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/131922.

Council of Science Editors:

Korpas L. Quantization of symplectic cobordisms. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131922

14. Fazeela, K. Momentum maps on Symplectic manifolds;.

Degree: Mathematics, 2008, University of Calicut

None

Bibliography p. 205-209

Advisors/Committee Members: Moosath, K S Subramanian.

Subjects/Keywords: Mathematics; Standard Momentum Map; Symplectic Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fazeela, K. (2008). Momentum maps on Symplectic manifolds;. (Thesis). University of Calicut. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/5669

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fazeela, K. “Momentum maps on Symplectic manifolds;.” 2008. Thesis, University of Calicut. Accessed November 29, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/5669.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fazeela, K. “Momentum maps on Symplectic manifolds;.” 2008. Web. 29 Nov 2020.

Vancouver:

Fazeela K. Momentum maps on Symplectic manifolds;. [Internet] [Thesis]. University of Calicut; 2008. [cited 2020 Nov 29]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/5669.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fazeela K. Momentum maps on Symplectic manifolds;. [Thesis]. University of Calicut; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/5669

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

15. Hong, Wei. Some problems in Poisson geometry.

Degree: 2013, Penn State University

 Two main topics are discussed in this dissertation. In the first part (see Chapter 3), I compute the Poisson cohomology of Poisson del Pezzo surfaces.… (more)

Subjects/Keywords: (holomorphic) Poisson manifolds; Poisson cohomology; Courant algebroid; hypercomplex structure; holomorphic symplectic structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hong, W. (2013). Some problems in Poisson geometry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/17480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Thesis, Penn State University. Accessed November 29, 2020. https://submit-etda.libraries.psu.edu/catalog/17480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Web. 29 Nov 2020.

Vancouver:

Hong W. Some problems in Poisson geometry. [Internet] [Thesis]. Penn State University; 2013. [cited 2020 Nov 29]. Available from: https://submit-etda.libraries.psu.edu/catalog/17480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hong W. Some problems in Poisson geometry. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/17480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Keddari, Nassima. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.

Degree: Docteur es, Mathématiques, 2018, Université de Strasbourg

Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec… (more)

Subjects/Keywords: Dynamique Hamiltonienne; Homologie de Floer; Variétés symplectiques; Monotone Lagrangian submanifolds; Floer homology; Symplectic manifolds; 516.36

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Keddari, N. (2018). Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2018STRAD030

Chicago Manual of Style (16th Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Doctoral Dissertation, Université de Strasbourg. Accessed November 29, 2020. http://www.theses.fr/2018STRAD030.

MLA Handbook (7th Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Web. 29 Nov 2020.

Vancouver:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2018. [cited 2020 Nov 29]. Available from: http://www.theses.fr/2018STRAD030.

Council of Science Editors:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Doctoral Dissertation]. Université de Strasbourg; 2018. Available from: http://www.theses.fr/2018STRAD030


University of Minnesota

17. Li, Jun. Symplectomorphism Group of Rational 4-Manifolds.

Degree: PhD, Mathematics, 2017, University of Minnesota

 We develop techniques for studying the symplectomorphism group of rational 4-manifolds. We study the space of tamed almost complex structures \mJ\w using a fine decomposition… (more)

Subjects/Keywords: almost complex manifold; ball packing; holomorphic curves; rational 4-manifolds; symplectic geometry; symplectomorphism groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, J. (2017). Symplectomorphism Group of Rational 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/190537

Chicago Manual of Style (16th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Doctoral Dissertation, University of Minnesota. Accessed November 29, 2020. http://hdl.handle.net/11299/190537.

MLA Handbook (7th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Web. 29 Nov 2020.

Vancouver:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11299/190537.

Council of Science Editors:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/190537


University of Waterloo

18. Hays, Christopher. Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces.

Degree: 2006, University of Waterloo

 <html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let Σ<em>g</em> be a closed Riemann surface of genus g. Generalizing Ivan Smith's construction, for each g ≥ 1… (more)

Subjects/Keywords: Mathematics; Symplectic Manifolds; Isotopy Problem; Branched Covers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hays, C. (2006). Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/2917

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hays, Christopher. “Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces.” 2006. Thesis, University of Waterloo. Accessed November 29, 2020. http://hdl.handle.net/10012/2917.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hays, Christopher. “Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces.” 2006. Web. 29 Nov 2020.

Vancouver:

Hays C. Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. [Internet] [Thesis]. University of Waterloo; 2006. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10012/2917.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hays C. Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. [Thesis]. University of Waterloo; 2006. Available from: http://hdl.handle.net/10012/2917

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

19. Lee, Junho. Family Gromov-Witten invariants for Kälher surfaces.

Degree: PhD, Department of Mathematics, 2001, Michigan State University

Subjects/Keywords: Invariants; Surfaces; Curves on surfaces; Kählerian structures; Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, J. (2001). Family Gromov-Witten invariants for Kälher surfaces. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:30889

Chicago Manual of Style (16th Edition):

Lee, Junho. “Family Gromov-Witten invariants for Kälher surfaces.” 2001. Doctoral Dissertation, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:30889.

MLA Handbook (7th Edition):

Lee, Junho. “Family Gromov-Witten invariants for Kälher surfaces.” 2001. Web. 29 Nov 2020.

Vancouver:

Lee J. Family Gromov-Witten invariants for Kälher surfaces. [Internet] [Doctoral dissertation]. Michigan State University; 2001. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:30889.

Council of Science Editors:

Lee J. Family Gromov-Witten invariants for Kälher surfaces. [Doctoral Dissertation]. Michigan State University; 2001. Available from: http://etd.lib.msu.edu/islandora/object/etd:30889


University of Hong Kong

20. Mao, Shenggen. Symplectic analysis of flexible structures by finite elements.

Degree: 1996, University of Hong Kong

Subjects/Keywords: Symplectic manifolds.; Finite element method.; Flexible structures.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mao, S. (1996). Symplectic analysis of flexible structures by finite elements. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/34771

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mao, Shenggen. “Symplectic analysis of flexible structures by finite elements.” 1996. Thesis, University of Hong Kong. Accessed November 29, 2020. http://hdl.handle.net/10722/34771.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mao, Shenggen. “Symplectic analysis of flexible structures by finite elements.” 1996. Web. 29 Nov 2020.

Vancouver:

Mao S. Symplectic analysis of flexible structures by finite elements. [Internet] [Thesis]. University of Hong Kong; 1996. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10722/34771.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mao S. Symplectic analysis of flexible structures by finite elements. [Thesis]. University of Hong Kong; 1996. Available from: http://hdl.handle.net/10722/34771

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Lorraine

21. Gérard, Maxime. Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry.

Degree: Docteur es, Mathématiques, 2018, Université de Lorraine

Étant donné une variété symplectique (M,ω), il existe toujours des structures presque complexes ω-compatibles positives. La question qui nous intéresse est de trouver des méthodes… (more)

Subjects/Keywords: Variété symplectique; Structures presque complexes; Tenseur de Nijenhuis; Symplectic manifolds; Almost complex structures; Nijenhuis tensor; 516.36; 515.63

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gérard, M. (2018). Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2018LORR0051

Chicago Manual of Style (16th Edition):

Gérard, Maxime. “Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry.” 2018. Doctoral Dissertation, Université de Lorraine. Accessed November 29, 2020. http://www.theses.fr/2018LORR0051.

MLA Handbook (7th Edition):

Gérard, Maxime. “Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry.” 2018. Web. 29 Nov 2020.

Vancouver:

Gérard M. Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. [Internet] [Doctoral dissertation]. Université de Lorraine; 2018. [cited 2020 Nov 29]. Available from: http://www.theses.fr/2018LORR0051.

Council of Science Editors:

Gérard M. Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. [Doctoral Dissertation]. Université de Lorraine; 2018. Available from: http://www.theses.fr/2018LORR0051

22. Bongers, S.R. Geometric quantization of symplectic and Poisson manifolds.

Degree: 2014, Universiteit Utrecht

 The first part of this thesis provides an introduction to recent development in geometric quantization of symplectic and Poisson manifolds, including modern refinements involving Lie… (more)

Subjects/Keywords: quantization; geometric quantization; symplectic manifolds; Poisson manifolds; Poisson sigma-model

…0 ∇0 where i! = (i∗ )∨ ◦ T h. In the case of symplectic manifolds we should get… …In chapter 2 we give a review of standard geometric quantization of symplectic manifolds… …of symplectic manifolds, this gives the construction of a prequantum line bundle, which is… …reproduce the geometric quantization of symplectic manifolds and give rise to the Moyal… …Symplectic Manifolds In this chapter we give a review of standard geometric quantization of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bongers, S. R. (2014). Geometric quantization of symplectic and Poisson manifolds. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/290019

Chicago Manual of Style (16th Edition):

Bongers, S R. “Geometric quantization of symplectic and Poisson manifolds.” 2014. Masters Thesis, Universiteit Utrecht. Accessed November 29, 2020. http://dspace.library.uu.nl:8080/handle/1874/290019.

MLA Handbook (7th Edition):

Bongers, S R. “Geometric quantization of symplectic and Poisson manifolds.” 2014. Web. 29 Nov 2020.

Vancouver:

Bongers SR. Geometric quantization of symplectic and Poisson manifolds. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2020 Nov 29]. Available from: http://dspace.library.uu.nl:8080/handle/1874/290019.

Council of Science Editors:

Bongers SR. Geometric quantization of symplectic and Poisson manifolds. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/290019


University of Michigan

23. Pelayo, Alvaro. Symplectic torus actions.

Degree: PhD, Pure Sciences, 2007, University of Michigan

 We prove several theorems regarding symplectic torus actions and related topics. The thesis consists of four chapters, each of them with an independent abstract and… (more)

Subjects/Keywords: Classification; Homotopy; Manifolds-4; Manifolds-four; Symplectic Orbits; Toric Ball Packings; Torus Actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pelayo, A. (2007). Symplectic torus actions. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126794

Chicago Manual of Style (16th Edition):

Pelayo, Alvaro. “Symplectic torus actions.” 2007. Doctoral Dissertation, University of Michigan. Accessed November 29, 2020. http://hdl.handle.net/2027.42/126794.

MLA Handbook (7th Edition):

Pelayo, Alvaro. “Symplectic torus actions.” 2007. Web. 29 Nov 2020.

Vancouver:

Pelayo A. Symplectic torus actions. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/2027.42/126794.

Council of Science Editors:

Pelayo A. Symplectic torus actions. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126794

24. Courte, Sylvain. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.

Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure

À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler… (more)

Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991

Chicago Manual of Style (16th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed November 29, 2020. http://www.theses.fr/2015ENSL0991.

MLA Handbook (7th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 29 Nov 2020.

Vancouver:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2020 Nov 29]. Available from: http://www.theses.fr/2015ENSL0991.

Council of Science Editors:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991


Rhodes University

25. Remsing, Claidiu Cristian. Tangentially symplectic foliations.

Degree: Faculty of Science, Mathematics, 1994, Rhodes University

 This thesis is concerned principally with tangential geometry and the applications of these concepts to tangentially symplectic foliations. The subject of tangential geometry is still… (more)

Subjects/Keywords: Geometry Problems, exercises, etc; Geometry, Differential; Symplectic manifolds; Poisson manifolds; Foliations (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Remsing, C. C. (1994). Tangentially symplectic foliations. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005233

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Remsing, Claidiu Cristian. “Tangentially symplectic foliations.” 1994. Thesis, Rhodes University. Accessed November 29, 2020. http://hdl.handle.net/10962/d1005233.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Remsing, Claidiu Cristian. “Tangentially symplectic foliations.” 1994. Web. 29 Nov 2020.

Vancouver:

Remsing CC. Tangentially symplectic foliations. [Internet] [Thesis]. Rhodes University; 1994. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10962/d1005233.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Remsing CC. Tangentially symplectic foliations. [Thesis]. Rhodes University; 1994. Available from: http://hdl.handle.net/10962/d1005233

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

26. Correa, Eder de Moraes, 1986-. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.

Degree: 2017, Universidade Estadual de Campinas

 Abstract: The purpose of this thesis is to study Hamiltonian integrable systems in coadjoint orbits and topics related to its applications. This work is essentially… (more)

Subjects/Keywords: Lie, Teoria de; Geometria simplética; Sistemas hamiltonianos; Calabi-Yau, Variedades de; Geometria diferencial; Lie theory; Symplectic geometry; Hamiltonian systems; Calabi-Yau manifolds; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Correa, Eder de Moraes, 1. (2017). Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Thesis, Universidade Estadual de Campinas. Accessed November 29, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Web. 29 Nov 2020.

Vancouver:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Internet] [Thesis]. Universidade Estadual de Campinas; 2017. [cited 2020 Nov 29]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Thesis]. Universidade Estadual de Campinas; 2017. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rhodes University

27. Russell, Neil Eric. Aspects of the symplectic and metric geometry of classical and quantum physics.

Degree: Faculty of Science, Physics and Electronics, 1993, Rhodes University

 I investigate some algebras and calculi naturally associated with the symplectic and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for… (more)

Subjects/Keywords: Symplectic manifolds; Geometry, Differential; Geometric quantization; Quantum theory; Clifford algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Russell, N. E. (1993). Aspects of the symplectic and metric geometry of classical and quantum physics. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005237

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Russell, Neil Eric. “Aspects of the symplectic and metric geometry of classical and quantum physics.” 1993. Thesis, Rhodes University. Accessed November 29, 2020. http://hdl.handle.net/10962/d1005237.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Russell, Neil Eric. “Aspects of the symplectic and metric geometry of classical and quantum physics.” 1993. Web. 29 Nov 2020.

Vancouver:

Russell NE. Aspects of the symplectic and metric geometry of classical and quantum physics. [Internet] [Thesis]. Rhodes University; 1993. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10962/d1005237.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Russell NE. Aspects of the symplectic and metric geometry of classical and quantum physics. [Thesis]. Rhodes University; 1993. Available from: http://hdl.handle.net/10962/d1005237

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universitat de Barcelona

28. Sáez Calvo, Carles. Finite groups acting on smooth and symplectic 4-manifolds.

Degree: Departament de Matemàtiques i Informàtica, 2019, Universitat de Barcelona

 En esta tesis se estudian problemas relacionados con acciones de grupos finitos en 4-variedades diferenciables y simplécticas. Se prueba que toda 4-variedad diferenciable cerrada X… (more)

Subjects/Keywords: Geometria simplèctica; Geometría simpléctica; Symplectic geometry; Grups de transformacions; Grupos de transformaciones; Transformation groups; Varietats diferenciables; Variedades diferenciables; Differentiable manifolds; Ciències Experimentals i Matemàtiques; 51

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sáez Calvo, C. (2019). Finite groups acting on smooth and symplectic 4-manifolds. (Thesis). Universitat de Barcelona. Retrieved from http://hdl.handle.net/10803/667781

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sáez Calvo, Carles. “Finite groups acting on smooth and symplectic 4-manifolds.” 2019. Thesis, Universitat de Barcelona. Accessed November 29, 2020. http://hdl.handle.net/10803/667781.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sáez Calvo, Carles. “Finite groups acting on smooth and symplectic 4-manifolds.” 2019. Web. 29 Nov 2020.

Vancouver:

Sáez Calvo C. Finite groups acting on smooth and symplectic 4-manifolds. [Internet] [Thesis]. Universitat de Barcelona; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10803/667781.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáez Calvo C. Finite groups acting on smooth and symplectic 4-manifolds. [Thesis]. Universitat de Barcelona; 2019. Available from: http://hdl.handle.net/10803/667781

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New Mexico

29. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.

Degree: Mathematics & Statistics, 2010, University of New Mexico

 We use contact homology to distinguish contact structures on various manifolds. We are primarily interested in contact manifolds which admit an action of Reeb type… (more)

Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193

Chicago Manual of Style (16th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed November 29, 2020. http://hdl.handle.net/1928/11193.

MLA Handbook (7th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 29 Nov 2020.

Vancouver:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1928/11193.

Council of Science Editors:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193


Université de Montréal

30. Rieser, Antonio P. Éclatement et contraction lagrangiens et applications.

Degree: 2010, Université de Montréal

Subjects/Keywords: Symplectique; Quatre-variétés; Sous-variété lagrangienne; Packing; Packing relatif; Involution anti-symplectique; Variété réelle; Real symplectic manifolds; Relative packing; Anti-symplectic involution; Four-manifolds; Symplectic; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rieser, A. P. (2010). Éclatement et contraction lagrangiens et applications. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4532

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rieser, Antonio P. “Éclatement et contraction lagrangiens et applications.” 2010. Thesis, Université de Montréal. Accessed November 29, 2020. http://hdl.handle.net/1866/4532.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rieser, Antonio P. “Éclatement et contraction lagrangiens et applications.” 2010. Web. 29 Nov 2020.

Vancouver:

Rieser AP. Éclatement et contraction lagrangiens et applications. [Internet] [Thesis]. Université de Montréal; 2010. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1866/4532.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rieser AP. Éclatement et contraction lagrangiens et applications. [Thesis]. Université de Montréal; 2010. Available from: http://hdl.handle.net/1866/4532

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.