Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Symplectic group)`

.
Showing records 1 – 23 of
23 total matches.

▼ Search Limiters

Louisiana State University

1. Arslan, Mustafa. Integral cohomology of the Siegel modular variety of degree two and level three.

Degree: PhD, Applied Mathematics, 2005, Louisiana State University

URL: etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504

► In this thesis work Deligne's spectral sequence E^{p,q}_{r} with integer coefficients for the embedding of the Siegel modular variety of degree two and level three,…
(more)

Subjects/Keywords: symplectic group; siegel modular variety

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arslan, M. (2005). Integral cohomology of the Siegel modular variety of degree two and level three. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504

Chicago Manual of Style (16^{th} Edition):

Arslan, Mustafa. “Integral cohomology of the Siegel modular variety of degree two and level three.” 2005. Doctoral Dissertation, Louisiana State University. Accessed August 11, 2020. etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504.

MLA Handbook (7^{th} Edition):

Arslan, Mustafa. “Integral cohomology of the Siegel modular variety of degree two and level three.” 2005. Web. 11 Aug 2020.

Vancouver:

Arslan M. Integral cohomology of the Siegel modular variety of degree two and level three. [Internet] [Doctoral dissertation]. Louisiana State University; 2005. [cited 2020 Aug 11]. Available from: etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504.

Council of Science Editors:

Arslan M. Integral cohomology of the Siegel modular variety of degree two and level three. [Doctoral Dissertation]. Louisiana State University; 2005. Available from: etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504

University of Alberta

2.
Miersma, Jonathan.
Flag actions and representations of the *symplectic*
* group*.

Degree: MS, Department of Mathematical and Statistical Sciences, 2011, University of Alberta

URL: https://era.library.ualberta.ca/files/jd472w79n

► A ﬂag of a ﬁnite dimensional vector space V is a nested sequence of subspaces of V . The *symplectic* *group* of V acts on…
(more)

Subjects/Keywords: flag; representation; Sp(4,q); character; group; action; symplectic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Miersma, J. (2011). Flag actions and representations of the symplectic group. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/jd472w79n

Chicago Manual of Style (16^{th} Edition):

Miersma, Jonathan. “Flag actions and representations of the symplectic group.” 2011. Masters Thesis, University of Alberta. Accessed August 11, 2020. https://era.library.ualberta.ca/files/jd472w79n.

MLA Handbook (7^{th} Edition):

Miersma, Jonathan. “Flag actions and representations of the symplectic group.” 2011. Web. 11 Aug 2020.

Vancouver:

Miersma J. Flag actions and representations of the symplectic group. [Internet] [Masters thesis]. University of Alberta; 2011. [cited 2020 Aug 11]. Available from: https://era.library.ualberta.ca/files/jd472w79n.

Council of Science Editors:

Miersma J. Flag actions and representations of the symplectic group. [Masters Thesis]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/jd472w79n

University of Toronto

3. Loizides, Yiannis. Norm-square localization for Hamiltonian LG-spaces.

Degree: PhD, 2017, University of Toronto

URL: http://hdl.handle.net/1807/80689

► In this thesis we prove norm-square localization formulas for two invariants of Hamiltonian loop *group* spaces: twisted Duistermaat-Heckman distributions and a K-theoretic `quantization'. The terms…
(more)

Subjects/Keywords: index theory; localization; loop group; quantization; symplectic geometry; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Loizides, Y. (2017). Norm-square localization for Hamiltonian LG-spaces. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/80689

Chicago Manual of Style (16^{th} Edition):

Loizides, Yiannis. “Norm-square localization for Hamiltonian LG-spaces.” 2017. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/80689.

MLA Handbook (7^{th} Edition):

Loizides, Yiannis. “Norm-square localization for Hamiltonian LG-spaces.” 2017. Web. 11 Aug 2020.

Vancouver:

Loizides Y. Norm-square localization for Hamiltonian LG-spaces. [Internet] [Doctoral dissertation]. University of Toronto; 2017. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/80689.

Council of Science Editors:

Loizides Y. Norm-square localization for Hamiltonian LG-spaces. [Doctoral Dissertation]. University of Toronto; 2017. Available from: http://hdl.handle.net/1807/80689

University of Toronto

4.
Holden, Tyler.
Convexity and Cohomology of the Based Loop * Group*.

Degree: PhD, 2016, University of Toronto

URL: http://hdl.handle.net/1807/76450

► Let K be a compact, connected, simply connected Lie *group* and define Ω K to be the loops on K. Let Ω_\mr{alg}K be those loops…
(more)

Subjects/Keywords: based loop group; convexity; moment map; symplectic geometry; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Holden, T. (2016). Convexity and Cohomology of the Based Loop Group. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76450

Chicago Manual of Style (16^{th} Edition):

Holden, Tyler. “Convexity and Cohomology of the Based Loop Group.” 2016. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/76450.

MLA Handbook (7^{th} Edition):

Holden, Tyler. “Convexity and Cohomology of the Based Loop Group.” 2016. Web. 11 Aug 2020.

Vancouver:

Holden T. Convexity and Cohomology of the Based Loop Group. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/76450.

Council of Science Editors:

Holden T. Convexity and Cohomology of the Based Loop Group. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76450

Northeastern University

5.
Gamse, Elisheva Adina.
Two explorations in *symplectic* geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on *symplectic* manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

URL: http://hdl.handle.net/2047/D20211399

► In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure…
(more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed August 11, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 11 Aug 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

6.
Ackermann, Robert.
On pseudo-Anosov maps, *symplectic*, Perron-Frobenius matrices, and compression bodies.

Degree: 2014, University of California – eScholarship, University of California

URL: http://www.escholarship.org/uc/item/4g92n22s

► In 1988, William Thurston announced the completion of a classification of surface automorphisms into three types up to isotopy: periodic, reducible, and pseudo-Anosov. The most…
(more)

Subjects/Keywords: Mathematics; compression body; dilatation; mapping class group; Perron-Frobenius; pseudo-Anosov; symplectic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ackermann, R. (2014). On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/4g92n22s

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Thesis, University of California – eScholarship, University of California. Accessed August 11, 2020. http://www.escholarship.org/uc/item/4g92n22s.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Web. 11 Aug 2020.

Vancouver:

Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2020 Aug 11]. Available from: http://www.escholarship.org/uc/item/4g92n22s.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/4g92n22s

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

7. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.

Degree: 2013, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/1868

► In this thesis, we study 4-dimensional weighted projective spaces and homotopy properties of their symplectomorphism groups. Using these computations, we also investigate some homotopy theoretic…
(more)

Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed August 11, 2020. https://ir.lib.uwo.ca/etd/1868.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 11 Aug 2020.

Vancouver:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2020 Aug 11]. Available from: https://ir.lib.uwo.ca/etd/1868.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868

Not specified: Masters Thesis or Doctoral Dissertation

The Ohio State University

8. Kennedy, Chris A. Construction of Maps by Postnikov Towers.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

► Using Postnikov towers, we investigate the possible degrees of self-maps of variousspaces, including SU(3), Sp(2), SU(4), and the principal Sp(1)-bundles over S^{7}. Thisinvestigation requires determining…
(more)

Subjects/Keywords: Mathematics; algebraic topology; Postnikov towers; secondary cohomology operations; higher cohomology operations; special unitary group; symplectic group; H-spaces; fiber bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, C. A. (2018). Construction of Maps by Postnikov Towers. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

Chicago Manual of Style (16^{th} Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Doctoral Dissertation, The Ohio State University. Accessed August 11, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

MLA Handbook (7^{th} Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Web. 11 Aug 2020.

Vancouver:

Kennedy CA. Construction of Maps by Postnikov Towers. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2020 Aug 11]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

Council of Science Editors:

Kennedy CA. Construction of Maps by Postnikov Towers. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

9. Sugimoto, Yoshihiro. Spectral spread and non-autonomous Hamiltonian diffeomorphisms .

Degree: 2019, Kyoto University

URL: http://hdl.handle.net/2433/242579

Subjects/Keywords: symplectic geometry; Floer homology; Hamiltonian diffeomorphism group; Hofer geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sugimoto, Y. (2019). Spectral spread and non-autonomous Hamiltonian diffeomorphisms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/242579

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Thesis, Kyoto University. Accessed August 11, 2020. http://hdl.handle.net/2433/242579.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Web. 11 Aug 2020.

Vancouver:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Internet] [Thesis]. Kyoto University; 2019. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/2433/242579.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Thesis]. Kyoto University; 2019. Available from: http://hdl.handle.net/2433/242579

Not specified: Masters Thesis or Doctoral Dissertation

10. Mendousse, Grégory. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.

Degree: Docteur es, Mathématiques, 2017, Reims

URL: http://www.theses.fr/2017REIMS007

►

Ce travail s’inscrit dans l’étude des symétries d’espaces de dimension infinie. Il répond à des questions algébriques en suivant des méthodes analytiques. Plus précisément, nous… (more)

Subjects/Keywords: Groupe symplectique complexe; Représentation unitaire; Décomposition isotypique; Modèle non-Standard; Fonctions hypergéométriques; Fonctions de Bessel; Complex symplectic group; Unitary representation; Isotypic decomposition; Non-Standard model; Hypergeometric functions; Bessel functions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mendousse, G. (2017). Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. (Doctoral Dissertation). Reims. Retrieved from http://www.theses.fr/2017REIMS007

Chicago Manual of Style (16^{th} Edition):

Mendousse, Grégory. “Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.” 2017. Doctoral Dissertation, Reims. Accessed August 11, 2020. http://www.theses.fr/2017REIMS007.

MLA Handbook (7^{th} Edition):

Mendousse, Grégory. “Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.” 2017. Web. 11 Aug 2020.

Vancouver:

Mendousse G. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. [Internet] [Doctoral dissertation]. Reims; 2017. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2017REIMS007.

Council of Science Editors:

Mendousse G. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. [Doctoral Dissertation]. Reims; 2017. Available from: http://www.theses.fr/2017REIMS007

Georgia Southern University

11.
Davis, Michael S.
Homogeneous *Symplectic* Manifolds of the Galilei * Group*.

Degree: MSin Mathematics (M.S.), Department of Mathematical Sciences, 2012, Georgia Southern University

URL: https://digitalcommons.georgiasouthern.edu/etd/866

► In this thesis we classify all *symplectic* manifolds admitting a transitive, 2-form preserving action of the Galilei *group* G. Using the moment map and…
(more)

Subjects/Keywords: ETD; Symplectic manifold; Coadjoint orbit; Differential 2-form; Galilei group; Mathematics; Jack N. Averitt College of Graduate Studies, Electronic Theses & Dissertations, ETDs, Student Research

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Davis, M. S. (2012). Homogeneous Symplectic Manifolds of the Galilei Group. (Masters Thesis). Georgia Southern University. Retrieved from https://digitalcommons.georgiasouthern.edu/etd/866

Chicago Manual of Style (16^{th} Edition):

Davis, Michael S. “Homogeneous Symplectic Manifolds of the Galilei Group.” 2012. Masters Thesis, Georgia Southern University. Accessed August 11, 2020. https://digitalcommons.georgiasouthern.edu/etd/866.

MLA Handbook (7^{th} Edition):

Davis, Michael S. “Homogeneous Symplectic Manifolds of the Galilei Group.” 2012. Web. 11 Aug 2020.

Vancouver:

Davis MS. Homogeneous Symplectic Manifolds of the Galilei Group. [Internet] [Masters thesis]. Georgia Southern University; 2012. [cited 2020 Aug 11]. Available from: https://digitalcommons.georgiasouthern.edu/etd/866.

Council of Science Editors:

Davis MS. Homogeneous Symplectic Manifolds of the Galilei Group. [Masters Thesis]. Georgia Southern University; 2012. Available from: https://digitalcommons.georgiasouthern.edu/etd/866

East Tennessee State University

12.
Frazier, William.
Application of *Symplectic* Integration on a Dynamical System.

Degree: MS, Mathematical Sciences, 2017, East Tennessee State University

URL: https://dc.etsu.edu/etd/3213

► Molecular Dynamics (MD) is the numerical simulation of a large system of interacting molecules, and one of the key components of a MD simulation…
(more)

Subjects/Keywords: Lie algebra; Lie group; symplectic integration; molecular dynamics; Algebra; Dynamic Systems; Non-linear Dynamics; Numerical Analysis and Computation; Ordinary Differential Equations and Applied Dynamics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Frazier, W. (2017). Application of Symplectic Integration on a Dynamical System. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/3213

Chicago Manual of Style (16^{th} Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Masters Thesis, East Tennessee State University. Accessed August 11, 2020. https://dc.etsu.edu/etd/3213.

MLA Handbook (7^{th} Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Web. 11 Aug 2020.

Vancouver:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Internet] [Masters thesis]. East Tennessee State University; 2017. [cited 2020 Aug 11]. Available from: https://dc.etsu.edu/etd/3213.

Council of Science Editors:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Masters Thesis]. East Tennessee State University; 2017. Available from: https://dc.etsu.edu/etd/3213

13.
Shorser, Lindsey.
Scalar and Vector Coherent State Representations of Compact and Non-compact *Symplectic* Groups.

Degree: 2010, University of Toronto

URL: http://hdl.handle.net/1807/32951

►

When solving problems involving quantum mechanical systems, it is frequently desirable to find the matrix elements of a unitary representation T of a real algebraic… (more)

Subjects/Keywords: Lie algebra; Lie group; representation; symplectic; coherent state; 0405

…Sp(n) and sp(n)
Let Sp(n) be the compact *symplectic* *group*… …Factorization for the
Compact *Symplectic* *Group*
3.1
Setup
In this chapter, G is the compact… …*symplectic* *group* Sp(n) with Lie algebra g = sp(n), the
complexification of… …Factorization for the Compact *Symplectic* *Group* 24
where Ti is a representation of U(1), the… …Factorization for the Compact *Symplectic* *Group* 25
Zj
.
j=0 j!
∞
g = exp(Z) = ∑
(3.7…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shorser, L. (2010). Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/32951

Chicago Manual of Style (16^{th} Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/32951.

MLA Handbook (7^{th} Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Web. 11 Aug 2020.

Vancouver:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/32951.

Council of Science Editors:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/32951

University of Florida

14. Kutsak, Sergii M. Essential Manifolds with Extra Structures.

Degree: PhD, Mathematics, 2013, University of Florida

URL: https://ufdc.ufl.edu/UFE0045303

► We consider classes of algebraic manifoldsA, of *symplectic* manifolds S, of *symplectic* manifolds with the hard Lefschetzproperty HS and the class of cohomologically *symplectic* manifolds…
(more)

Subjects/Keywords: Algebra; Coordinate systems; Integers; Isomorphism; Lie groups; Mathematical theorems; Mathematics; Tangents; Topology; Vector spaces; algebra – algebraic – contact – essential – fundamental – group – hard – invariant – lefschetz – lie – manifold – nilmanifold – property – structure – symplectic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kutsak, S. M. (2013). Essential Manifolds with Extra Structures. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0045303

Chicago Manual of Style (16^{th} Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Doctoral Dissertation, University of Florida. Accessed August 11, 2020. https://ufdc.ufl.edu/UFE0045303.

MLA Handbook (7^{th} Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Web. 11 Aug 2020.

Vancouver:

Kutsak SM. Essential Manifolds with Extra Structures. [Internet] [Doctoral dissertation]. University of Florida; 2013. [cited 2020 Aug 11]. Available from: https://ufdc.ufl.edu/UFE0045303.

Council of Science Editors:

Kutsak SM. Essential Manifolds with Extra Structures. [Doctoral Dissertation]. University of Florida; 2013. Available from: https://ufdc.ufl.edu/UFE0045303

15.
Albouy, Olivier.
Discrete algebra and geometry applied to the Pauli *group* and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.

Degree: Docteur es, Physique, 2009, Université Claude Bernard – Lyon I

URL: http://www.theses.fr/2009LYO10077

►

Pour d non puissance d’un nombre premier, le nombre maximal de bases deux à deux décorrélées d’un espace de Hilbert de dimension d n’est pas… (more)

Subjects/Keywords: Information quantique; Groupe de Pauli; Bases décorrélées; Géométrie projective; Géométrie symplectique; Groupe de Clifford; Mesure de l’intrication; Espace des phases discret; Quantum information; Pauli group; Mutually unbiased bases; Projective geometry; Symplectic geometry; Clifford group; Entanglement measure; Discrete phase space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Albouy, O. (2009). Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2009LYO10077

Chicago Manual of Style (16^{th} Edition):

Albouy, Olivier. “Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.” 2009. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed August 11, 2020. http://www.theses.fr/2009LYO10077.

MLA Handbook (7^{th} Edition):

Albouy, Olivier. “Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.” 2009. Web. 11 Aug 2020.

Vancouver:

Albouy O. Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2009. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2009LYO10077.

Council of Science Editors:

Albouy O. Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2009. Available from: http://www.theses.fr/2009LYO10077

Brigham Young University

16. Xie, Zhifu. On the N-body Problem.

Degree: PhD, 2006, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd

► In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for *symplectic* path are studied. The…
(more)

Subjects/Keywords: N-body Problem; Central Configuration; Collision; Regulariztiion; Periodic Solution; Periodic Solution with Collision; Stability; Kepler Solution; Homographic Solution; Hamiltonian System; Index Theory; Symplectic Group; Symplectic Path; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xie, Z. (2006). On the N-body Problem. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd

Chicago Manual of Style (16^{th} Edition):

Xie, Zhifu. “On the N-body Problem.” 2006. Doctoral Dissertation, Brigham Young University. Accessed August 11, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd.

MLA Handbook (7^{th} Edition):

Xie, Zhifu. “On the N-body Problem.” 2006. Web. 11 Aug 2020.

Vancouver:

Xie Z. On the N-body Problem. [Internet] [Doctoral dissertation]. Brigham Young University; 2006. [cited 2020 Aug 11]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd.

Council of Science Editors:

Xie Z. On the N-body Problem. [Doctoral Dissertation]. Brigham Young University; 2006. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd

17. Lazrag, Ayadi. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.

Degree: Docteur es, Mathématiques, 2014, Nice

URL: http://www.theses.fr/2014NICE4060

►

Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire des résultats très connus en théorie du contrôle géométrique tels… (more)

Subjects/Keywords: Théorie du contrôle géométrique; Application Entrée-Sortie; Contrôlabilité locale au second ordre; Système de contrôle bilinéaire; Groupe symplectique; Lemme de Franks; Flots géodésiques; Geometric control theory; End-Point Mapping; Local controllability at second order; Bilinear control system; Symplectic group; Franks' lemma; Geodesic flows

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lazrag, A. (2014). Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2014NICE4060

Chicago Manual of Style (16^{th} Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Doctoral Dissertation, Nice. Accessed August 11, 2020. http://www.theses.fr/2014NICE4060.

MLA Handbook (7^{th} Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Web. 11 Aug 2020.

Vancouver:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Internet] [Doctoral dissertation]. Nice; 2014. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2014NICE4060.

Council of Science Editors:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Doctoral Dissertation]. Nice; 2014. Available from: http://www.theses.fr/2014NICE4060

18. Shen, Xuefeng. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.

Degree: Mathematics, 2019, University of California – San Diego

URL: http://www.escholarship.org/uc/item/9g2730gd

► The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem and to construct integrators that preserve the geometric properties…
(more)

Subjects/Keywords: Mathematics; geometric reduction; kalman filter; lie group; stiff system; symplectic integrator; variational integrator

…61
61
64
64
66
68
68
71
74
75
77
79
High-Order *Symplectic* Lie *Group* Methods on SO(n… …*Symplectic* Lie *Group* Methods on SO(n)”, submitted
to Journal of Computational Dynamics… …51
51
56
Chapter 3
Lie *Group* Variational Integrators for Rigid Body Problems using… …3.3 Lie *group* variational integrator… …90
Lagrangian variational integrators on the rotation *group* SO(n)…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shen, X. (2019). Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9g2730gd

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Thesis, University of California – San Diego. Accessed August 11, 2020. http://www.escholarship.org/uc/item/9g2730gd.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Web. 11 Aug 2020.

Vancouver:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Aug 11]. Available from: http://www.escholarship.org/uc/item/9g2730gd.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/9g2730gd

Not specified: Masters Thesis or Doctoral Dissertation

19.
Watts, Jordan.
Diffeologies, Differential Spaces, and *Symplectic* Geometry.

Degree: 2012, University of Toronto

URL: http://hdl.handle.net/1807/34959

►

Diffeological and differential spaces are generalisations of smooth structures on manifolds. We show that the “intersection” of these two categories is isomorphic to Frölicher spaces,… (more)

Subjects/Keywords: diffeology; differential spaces; symplectic geometry; Lie groups; Hamiltonian group actions; subcartesian spaces; 0405

…actions, and *symplectic* quotients
coming from compact Hamiltonian *group* actions. I will now… …Example 2.11 (*Symplectic* Quotient). Let G be a Lie *group* acting on a *symplectic*… …*symplectic*
geometry where such spaces arise. Let G be a compact Lie *group* acting smoothly on a… …ω) be a connected *symplectic* manifold, and let G be a compact Lie
*group* acting on M… …each. There will be a lot of focus on
geometric quotients coming from compact Lie *group*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Watts, J. (2012). Diffeologies, Differential Spaces, and Symplectic Geometry. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/34959

Chicago Manual of Style (16^{th} Edition):

Watts, Jordan. “Diffeologies, Differential Spaces, and Symplectic Geometry.” 2012. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/34959.

MLA Handbook (7^{th} Edition):

Watts, Jordan. “Diffeologies, Differential Spaces, and Symplectic Geometry.” 2012. Web. 11 Aug 2020.

Vancouver:

Watts J. Diffeologies, Differential Spaces, and Symplectic Geometry. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/34959.

Council of Science Editors:

Watts J. Diffeologies, Differential Spaces, and Symplectic Geometry. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/34959

20.
Shen, Xin.
Unramified computation of tensor L-functions on *symplectic* groups.

Degree: 2013, University of Minnesota

URL: http://purl.umn.edu/156231

► Tensor L-function is one of the important cases in the Langlands conjecture on the analytic properties of L-functions. Using the method of Rankin-Selberg convolution, Ginzburg,…
(more)

Subjects/Keywords: Fourier-Jacobi model; L-function; Non-generic; Symplectic group; Umramified; Whittaker-Shintani function

…tensor Lfunctions for G × GLn where G is a classical *group*. Assume that we know enough
analytic… …split reductive algebraic *group* over a number field F . Let A
be the Adele ring of F . We let… …G∞ =
v|∞
G(Fv ) and g∞ be the Lie algebra
of G∞ (viewed as a real *group*… …analytic *group* L G to G, which is called the L-*group* of G. Then by the
Satake isomorphism each… …H is a split classical *group*, and
when r is the standard representation of L H ×L GLn . We…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shen, X. (2013). Unramified computation of tensor L-functions on symplectic groups. (Thesis). University of Minnesota. Retrieved from http://purl.umn.edu/156231

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shen, Xin. “Unramified computation of tensor L-functions on symplectic groups.” 2013. Thesis, University of Minnesota. Accessed August 11, 2020. http://purl.umn.edu/156231.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shen, Xin. “Unramified computation of tensor L-functions on symplectic groups.” 2013. Web. 11 Aug 2020.

Vancouver:

Shen X. Unramified computation of tensor L-functions on symplectic groups. [Internet] [Thesis]. University of Minnesota; 2013. [cited 2020 Aug 11]. Available from: http://purl.umn.edu/156231.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Unramified computation of tensor L-functions on symplectic groups. [Thesis]. University of Minnesota; 2013. Available from: http://purl.umn.edu/156231

Not specified: Masters Thesis or Doctoral Dissertation

The Ohio State University

21. Chan, Ping Shun. Invariant representations of GSp(2).

Degree: PhD, Mathematics, 2005, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

► Let F be a number field or a p-adic field. We introduce in Chapter 2 of this work two reductive rank one F-groups, H1, H2,…
(more)

Subjects/Keywords: Mathematics; Automorphic representations; Langlands Functoriality; Lifting; Harmonic analysis on p-adic groups; Symplectic group of similitudes; GSp(2); { m GSp}(2); GSp(4); { m GSp}(4)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chan, P. S. (2005). Invariant representations of GSp(2). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

Chicago Manual of Style (16^{th} Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Doctoral Dissertation, The Ohio State University. Accessed August 11, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

MLA Handbook (7^{th} Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Web. 11 Aug 2020.

Vancouver:

Chan PS. Invariant representations of GSp(2). [Internet] [Doctoral dissertation]. The Ohio State University; 2005. [cited 2020 Aug 11]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

Council of Science Editors:

Chan PS. Invariant representations of GSp(2). [Doctoral Dissertation]. The Ohio State University; 2005. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

22. Jena, Andrew. Partitioning Pauli Operators: in Theory and in Practice.

Degree: 2019, University of Waterloo

URL: http://hdl.handle.net/10012/15017

► Measuring the expectation value of Pauli operators on prepared quantum states is a fundamental task in the variational quantum eigensolver. Simultaneously measuring sets of operators…
(more)

Subjects/Keywords: Clifford group; Pauli operators; partitioning; graph coloring; Singer cycles; VQE; variational quantum eigensolver; MUBs; mutually unbiased bases; symplectic representation; NP-hard

…Definition
i j 2 Let Pq denote the generalized Pauli *group* (ignoring phases)… …Nn
0 j`
`=1 Xq Zq : j` ∈ Z/qZ . In
the generalized Clifford *group*,
Nn
0 j`
Since
= q n… …sets a minimal partition
if it has exactly q n + 1 parts.
2
We now introduce the *symplectic*… …x28;Z/qZ)2n , its *symplectic* form. We shall
switch between the normal and *symplectic*… …be commuting in our *symplectic* notation. This
is captured by the *symplectic* inner product…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jena, A. (2019). Partitioning Pauli Operators: in Theory and in Practice. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/15017

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jena, Andrew. “Partitioning Pauli Operators: in Theory and in Practice.” 2019. Thesis, University of Waterloo. Accessed August 11, 2020. http://hdl.handle.net/10012/15017.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jena, Andrew. “Partitioning Pauli Operators: in Theory and in Practice.” 2019. Web. 11 Aug 2020.

Vancouver:

Jena A. Partitioning Pauli Operators: in Theory and in Practice. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/10012/15017.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jena A. Partitioning Pauli Operators: in Theory and in Practice. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/15017

Not specified: Masters Thesis or Doctoral Dissertation

ETH Zürich

23. Ott, Andreas Michael Johannes. The non-local sympletic vortex equations and gauged Gromov-Witten invariants.

Degree: 2010, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/152597

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ott, A. M. J. (2010). The non-local sympletic vortex equations and gauged Gromov-Witten invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152597

Chicago Manual of Style (16^{th} Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Doctoral Dissertation, ETH Zürich. Accessed August 11, 2020. http://hdl.handle.net/20.500.11850/152597.

MLA Handbook (7^{th} Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Web. 11 Aug 2020.

Vancouver:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/20.500.11850/152597.

Council of Science Editors:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152597