Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Symplectic group). Showing records 1 – 23 of 23 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Louisiana State University

1. Arslan, Mustafa. Integral cohomology of the Siegel modular variety of degree two and level three.

Degree: PhD, Applied Mathematics, 2005, Louisiana State University

 In this thesis work Deligne's spectral sequence Ep,qr with integer coefficients for the embedding of the Siegel modular variety of degree two and level three,… (more)

Subjects/Keywords: symplectic group; siegel modular variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arslan, M. (2005). Integral cohomology of the Siegel modular variety of degree two and level three. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504

Chicago Manual of Style (16th Edition):

Arslan, Mustafa. “Integral cohomology of the Siegel modular variety of degree two and level three.” 2005. Doctoral Dissertation, Louisiana State University. Accessed August 11, 2020. etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504.

MLA Handbook (7th Edition):

Arslan, Mustafa. “Integral cohomology of the Siegel modular variety of degree two and level three.” 2005. Web. 11 Aug 2020.

Vancouver:

Arslan M. Integral cohomology of the Siegel modular variety of degree two and level three. [Internet] [Doctoral dissertation]. Louisiana State University; 2005. [cited 2020 Aug 11]. Available from: etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504.

Council of Science Editors:

Arslan M. Integral cohomology of the Siegel modular variety of degree two and level three. [Doctoral Dissertation]. Louisiana State University; 2005. Available from: etd-03142006-134928 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2504


University of Alberta

2. Miersma, Jonathan. Flag actions and representations of the symplectic group.

Degree: MS, Department of Mathematical and Statistical Sciences, 2011, University of Alberta

 A flag of a finite dimensional vector space V is a nested sequence of subspaces of V . The symplectic group of V acts on… (more)

Subjects/Keywords: flag; representation; Sp(4,q); character; group; action; symplectic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miersma, J. (2011). Flag actions and representations of the symplectic group. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/jd472w79n

Chicago Manual of Style (16th Edition):

Miersma, Jonathan. “Flag actions and representations of the symplectic group.” 2011. Masters Thesis, University of Alberta. Accessed August 11, 2020. https://era.library.ualberta.ca/files/jd472w79n.

MLA Handbook (7th Edition):

Miersma, Jonathan. “Flag actions and representations of the symplectic group.” 2011. Web. 11 Aug 2020.

Vancouver:

Miersma J. Flag actions and representations of the symplectic group. [Internet] [Masters thesis]. University of Alberta; 2011. [cited 2020 Aug 11]. Available from: https://era.library.ualberta.ca/files/jd472w79n.

Council of Science Editors:

Miersma J. Flag actions and representations of the symplectic group. [Masters Thesis]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/jd472w79n


University of Toronto

3. Loizides, Yiannis. Norm-square localization for Hamiltonian LG-spaces.

Degree: PhD, 2017, University of Toronto

 In this thesis we prove norm-square localization formulas for two invariants of Hamiltonian loop group spaces: twisted Duistermaat-Heckman distributions and a K-theoretic `quantization'. The terms… (more)

Subjects/Keywords: index theory; localization; loop group; quantization; symplectic geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Loizides, Y. (2017). Norm-square localization for Hamiltonian LG-spaces. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/80689

Chicago Manual of Style (16th Edition):

Loizides, Yiannis. “Norm-square localization for Hamiltonian LG-spaces.” 2017. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/80689.

MLA Handbook (7th Edition):

Loizides, Yiannis. “Norm-square localization for Hamiltonian LG-spaces.” 2017. Web. 11 Aug 2020.

Vancouver:

Loizides Y. Norm-square localization for Hamiltonian LG-spaces. [Internet] [Doctoral dissertation]. University of Toronto; 2017. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/80689.

Council of Science Editors:

Loizides Y. Norm-square localization for Hamiltonian LG-spaces. [Doctoral Dissertation]. University of Toronto; 2017. Available from: http://hdl.handle.net/1807/80689


University of Toronto

4. Holden, Tyler. Convexity and Cohomology of the Based Loop Group.

Degree: PhD, 2016, University of Toronto

 Let K be a compact, connected, simply connected Lie group and define Ω K to be the loops on K. Let Ω_\mr{alg}K be those loops… (more)

Subjects/Keywords: based loop group; convexity; moment map; symplectic geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Holden, T. (2016). Convexity and Cohomology of the Based Loop Group. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76450

Chicago Manual of Style (16th Edition):

Holden, Tyler. “Convexity and Cohomology of the Based Loop Group.” 2016. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/76450.

MLA Handbook (7th Edition):

Holden, Tyler. “Convexity and Cohomology of the Based Loop Group.” 2016. Web. 11 Aug 2020.

Vancouver:

Holden T. Convexity and Cohomology of the Based Loop Group. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/76450.

Council of Science Editors:

Holden T. Convexity and Cohomology of the Based Loop Group. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76450


Northeastern University

5. Gamse, Elisheva Adina. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

 In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure… (more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed August 11, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 11 Aug 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

6. Ackermann, Robert. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.

Degree: 2014, University of California – eScholarship, University of California

 In 1988, William Thurston announced the completion of a classification of surface automorphisms into three types up to isotopy: periodic, reducible, and pseudo-Anosov. The most… (more)

Subjects/Keywords: Mathematics; compression body; dilatation; mapping class group; Perron-Frobenius; pseudo-Anosov; symplectic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ackermann, R. (2014). On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/4g92n22s

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Thesis, University of California – eScholarship, University of California. Accessed August 11, 2020. http://www.escholarship.org/uc/item/4g92n22s.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ackermann, Robert. “On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies.” 2014. Web. 11 Aug 2020.

Vancouver:

Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2020 Aug 11]. Available from: http://www.escholarship.org/uc/item/4g92n22s.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ackermann R. On pseudo-Anosov maps, symplectic, Perron-Frobenius matrices, and compression bodies. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/4g92n22s

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Western Ontario

7. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.

Degree: 2013, University of Western Ontario

 In this thesis, we study 4-dimensional weighted projective spaces and homotopy properties of their symplectomorphism groups. Using these computations, we also investigate some homotopy theoretic… (more)

Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed August 11, 2020. https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 11 Aug 2020.

Vancouver:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2020 Aug 11]. Available from: https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

8. Kennedy, Chris A. Construction of Maps by Postnikov Towers.

Degree: PhD, Mathematics, 2018, The Ohio State University

 Using Postnikov towers, we investigate the possible degrees of self-maps of variousspaces, including SU(3), Sp(2), SU(4), and the principal Sp(1)-bundles over S7. Thisinvestigation requires determining… (more)

Subjects/Keywords: Mathematics; algebraic topology; Postnikov towers; secondary cohomology operations; higher cohomology operations; special unitary group; symplectic group; H-spaces; fiber bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kennedy, C. A. (2018). Construction of Maps by Postnikov Towers. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

Chicago Manual of Style (16th Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Doctoral Dissertation, The Ohio State University. Accessed August 11, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

MLA Handbook (7th Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Web. 11 Aug 2020.

Vancouver:

Kennedy CA. Construction of Maps by Postnikov Towers. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2020 Aug 11]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

Council of Science Editors:

Kennedy CA. Construction of Maps by Postnikov Towers. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

9. Sugimoto, Yoshihiro. Spectral spread and non-autonomous Hamiltonian diffeomorphisms .

Degree: 2019, Kyoto University

Subjects/Keywords: symplectic geometry; Floer homology; Hamiltonian diffeomorphism group; Hofer geometry

Page 1 Page 2 Page 3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sugimoto, Y. (2019). Spectral spread and non-autonomous Hamiltonian diffeomorphisms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/242579

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Thesis, Kyoto University. Accessed August 11, 2020. http://hdl.handle.net/2433/242579.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Web. 11 Aug 2020.

Vancouver:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Internet] [Thesis]. Kyoto University; 2019. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/2433/242579.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Thesis]. Kyoto University; 2019. Available from: http://hdl.handle.net/2433/242579

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Mendousse, Grégory. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.

Degree: Docteur es, Mathématiques, 2017, Reims

Ce travail s’inscrit dans l’étude des symétries d’espaces de dimension infinie. Il répond à des questions algébriques en suivant des méthodes analytiques. Plus précisément, nous… (more)

Subjects/Keywords: Groupe symplectique complexe; Représentation unitaire; Décomposition isotypique; Modèle non-Standard; Fonctions hypergéométriques; Fonctions de Bessel; Complex symplectic group; Unitary representation; Isotypic decomposition; Non-Standard model; Hypergeometric functions; Bessel functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mendousse, G. (2017). Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. (Doctoral Dissertation). Reims. Retrieved from http://www.theses.fr/2017REIMS007

Chicago Manual of Style (16th Edition):

Mendousse, Grégory. “Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.” 2017. Doctoral Dissertation, Reims. Accessed August 11, 2020. http://www.theses.fr/2017REIMS007.

MLA Handbook (7th Edition):

Mendousse, Grégory. “Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions.” 2017. Web. 11 Aug 2020.

Vancouver:

Mendousse G. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. [Internet] [Doctoral dissertation]. Reims; 2017. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2017REIMS007.

Council of Science Editors:

Mendousse G. Analyse Harmonique Quaternionique et Fonctions Spéciales Classiques : Quaternionic Harmonic Analysis and Classical Special Functions. [Doctoral Dissertation]. Reims; 2017. Available from: http://www.theses.fr/2017REIMS007


Georgia Southern University

11. Davis, Michael S. Homogeneous Symplectic Manifolds of the Galilei Group.

Degree: MSin Mathematics (M.S.), Department of Mathematical Sciences, 2012, Georgia Southern University

  In this thesis we classify all symplectic manifolds admitting a transitive, 2-form preserving action of the Galilei group G. Using the moment map and… (more)

Subjects/Keywords: ETD; Symplectic manifold; Coadjoint orbit; Differential 2-form; Galilei group; Mathematics; Jack N. Averitt College of Graduate Studies, Electronic Theses & Dissertations, ETDs, Student Research

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davis, M. S. (2012). Homogeneous Symplectic Manifolds of the Galilei Group. (Masters Thesis). Georgia Southern University. Retrieved from https://digitalcommons.georgiasouthern.edu/etd/866

Chicago Manual of Style (16th Edition):

Davis, Michael S. “Homogeneous Symplectic Manifolds of the Galilei Group.” 2012. Masters Thesis, Georgia Southern University. Accessed August 11, 2020. https://digitalcommons.georgiasouthern.edu/etd/866.

MLA Handbook (7th Edition):

Davis, Michael S. “Homogeneous Symplectic Manifolds of the Galilei Group.” 2012. Web. 11 Aug 2020.

Vancouver:

Davis MS. Homogeneous Symplectic Manifolds of the Galilei Group. [Internet] [Masters thesis]. Georgia Southern University; 2012. [cited 2020 Aug 11]. Available from: https://digitalcommons.georgiasouthern.edu/etd/866.

Council of Science Editors:

Davis MS. Homogeneous Symplectic Manifolds of the Galilei Group. [Masters Thesis]. Georgia Southern University; 2012. Available from: https://digitalcommons.georgiasouthern.edu/etd/866


East Tennessee State University

12. Frazier, William. Application of Symplectic Integration on a Dynamical System.

Degree: MS, Mathematical Sciences, 2017, East Tennessee State University

  Molecular Dynamics (MD) is the numerical simulation of a large system of interacting molecules, and one of the key components of a MD simulation… (more)

Subjects/Keywords: Lie algebra; Lie group; symplectic integration; molecular dynamics; Algebra; Dynamic Systems; Non-linear Dynamics; Numerical Analysis and Computation; Ordinary Differential Equations and Applied Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Frazier, W. (2017). Application of Symplectic Integration on a Dynamical System. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/3213

Chicago Manual of Style (16th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Masters Thesis, East Tennessee State University. Accessed August 11, 2020. https://dc.etsu.edu/etd/3213.

MLA Handbook (7th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Web. 11 Aug 2020.

Vancouver:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Internet] [Masters thesis]. East Tennessee State University; 2017. [cited 2020 Aug 11]. Available from: https://dc.etsu.edu/etd/3213.

Council of Science Editors:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Masters Thesis]. East Tennessee State University; 2017. Available from: https://dc.etsu.edu/etd/3213

13. Shorser, Lindsey. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.

Degree: 2010, University of Toronto

When solving problems involving quantum mechanical systems, it is frequently desirable to find the matrix elements of a unitary representation T of a real algebraic… (more)

Subjects/Keywords: Lie algebra; Lie group; representation; symplectic; coherent state; 0405

…Sp(n) and sp(n) Let Sp(n) be the compact symplectic group… …Factorization for the Compact Symplectic Group 3.1 Setup In this chapter, G is the compact… …symplectic group Sp(n) with Lie algebra g = sp(n), the complexification of… …Factorization for the Compact Symplectic Group 24 where Ti is a representation of U(1), the… …Factorization for the Compact Symplectic Group 25 Zj . j=0 j! ∞ g = exp(Z) = ∑ (3.7… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shorser, L. (2010). Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/32951

Chicago Manual of Style (16th Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/32951.

MLA Handbook (7th Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Web. 11 Aug 2020.

Vancouver:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/32951.

Council of Science Editors:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/32951


University of Florida

14. Kutsak, Sergii M. Essential Manifolds with Extra Structures.

Degree: PhD, Mathematics, 2013, University of Florida

 We consider classes of algebraic manifoldsA, of symplectic manifolds S, of symplectic manifolds with the hard Lefschetzproperty HS and the class of cohomologically symplectic manifolds… (more)

Subjects/Keywords: Algebra; Coordinate systems; Integers; Isomorphism; Lie groups; Mathematical theorems; Mathematics; Tangents; Topology; Vector spaces; algebra  – algebraic  – contact  – essential  – fundamental  – group  – hard  – invariant  – lefschetz  – lie  – manifold  – nilmanifold  – property  – structure  – symplectic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kutsak, S. M. (2013). Essential Manifolds with Extra Structures. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0045303

Chicago Manual of Style (16th Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Doctoral Dissertation, University of Florida. Accessed August 11, 2020. https://ufdc.ufl.edu/UFE0045303.

MLA Handbook (7th Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Web. 11 Aug 2020.

Vancouver:

Kutsak SM. Essential Manifolds with Extra Structures. [Internet] [Doctoral dissertation]. University of Florida; 2013. [cited 2020 Aug 11]. Available from: https://ufdc.ufl.edu/UFE0045303.

Council of Science Editors:

Kutsak SM. Essential Manifolds with Extra Structures. [Doctoral Dissertation]. University of Florida; 2013. Available from: https://ufdc.ufl.edu/UFE0045303

15. Albouy, Olivier. Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.

Degree: Docteur es, Physique, 2009, Université Claude Bernard – Lyon I

Pour d non puissance d’un nombre premier, le nombre maximal de bases deux à deux décorrélées d’un espace de Hilbert de dimension d n’est pas… (more)

Subjects/Keywords: Information quantique; Groupe de Pauli; Bases décorrélées; Géométrie projective; Géométrie symplectique; Groupe de Clifford; Mesure de l’intrication; Espace des phases discret; Quantum information; Pauli group; Mutually unbiased bases; Projective geometry; Symplectic geometry; Clifford group; Entanglement measure; Discrete phase space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Albouy, O. (2009). Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2009LYO10077

Chicago Manual of Style (16th Edition):

Albouy, Olivier. “Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.” 2009. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed August 11, 2020. http://www.theses.fr/2009LYO10077.

MLA Handbook (7th Edition):

Albouy, Olivier. “Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique.” 2009. Web. 11 Aug 2020.

Vancouver:

Albouy O. Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2009. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2009LYO10077.

Council of Science Editors:

Albouy O. Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory : Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantique. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2009. Available from: http://www.theses.fr/2009LYO10077


Brigham Young University

16. Xie, Zhifu. On the N-body Problem.

Degree: PhD, 2006, Brigham Young University

  In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for symplectic path are studied. The… (more)

Subjects/Keywords: N-body Problem; Central Configuration; Collision; Regulariztiion; Periodic Solution; Periodic Solution with Collision; Stability; Kepler Solution; Homographic Solution; Hamiltonian System; Index Theory; Symplectic Group; Symplectic Path; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xie, Z. (2006). On the N-body Problem. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd

Chicago Manual of Style (16th Edition):

Xie, Zhifu. “On the N-body Problem.” 2006. Doctoral Dissertation, Brigham Young University. Accessed August 11, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd.

MLA Handbook (7th Edition):

Xie, Zhifu. “On the N-body Problem.” 2006. Web. 11 Aug 2020.

Vancouver:

Xie Z. On the N-body Problem. [Internet] [Doctoral dissertation]. Brigham Young University; 2006. [cited 2020 Aug 11]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd.

Council of Science Editors:

Xie Z. On the N-body Problem. [Doctoral Dissertation]. Brigham Young University; 2006. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1786&context=etd

17. Lazrag, Ayadi. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.

Degree: Docteur es, Mathématiques, 2014, Nice

Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire des résultats très connus en théorie du contrôle géométrique tels… (more)

Subjects/Keywords: Théorie du contrôle géométrique; Application Entrée-Sortie; Contrôlabilité locale au second ordre; Système de contrôle bilinéaire; Groupe symplectique; Lemme de Franks; Flots géodésiques; Geometric control theory; End-Point Mapping; Local controllability at second order; Bilinear control system; Symplectic group; Franks' lemma; Geodesic flows

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lazrag, A. (2014). Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2014NICE4060

Chicago Manual of Style (16th Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Doctoral Dissertation, Nice. Accessed August 11, 2020. http://www.theses.fr/2014NICE4060.

MLA Handbook (7th Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Web. 11 Aug 2020.

Vancouver:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Internet] [Doctoral dissertation]. Nice; 2014. [cited 2020 Aug 11]. Available from: http://www.theses.fr/2014NICE4060.

Council of Science Editors:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Doctoral Dissertation]. Nice; 2014. Available from: http://www.theses.fr/2014NICE4060

18. Shen, Xuefeng. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.

Degree: Mathematics, 2019, University of California – San Diego

 The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem and to construct integrators that preserve the geometric properties… (more)

Subjects/Keywords: Mathematics; geometric reduction; kalman filter; lie group; stiff system; symplectic integrator; variational integrator

…61 61 64 64 66 68 68 71 74 75 77 79 High-Order Symplectic Lie Group Methods on SO(n… …Symplectic Lie Group Methods on SO(n)”, submitted to Journal of Computational Dynamics… …51 51 56 Chapter 3 Lie Group Variational Integrators for Rigid Body Problems using… …3.3 Lie group variational integrator… …90 Lagrangian variational integrators on the rotation group SO(n)… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shen, X. (2019). Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Thesis, University of California – San Diego. Accessed August 11, 2020. http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Web. 11 Aug 2020.

Vancouver:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Aug 11]. Available from: http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Watts, Jordan. Diffeologies, Differential Spaces, and Symplectic Geometry.

Degree: 2012, University of Toronto

Diffeological and differential spaces are generalisations of smooth structures on manifolds. We show that the “intersection” of these two categories is isomorphic to Frölicher spaces,… (more)

Subjects/Keywords: diffeology; differential spaces; symplectic geometry; Lie groups; Hamiltonian group actions; subcartesian spaces; 0405

…actions, and symplectic quotients coming from compact Hamiltonian group actions. I will now… …Example 2.11 (Symplectic Quotient). Let G be a Lie group acting on a symplectic… …symplectic geometry where such spaces arise. Let G be a compact Lie group acting smoothly on a… …ω) be a connected symplectic manifold, and let G be a compact Lie group acting on M… …each. There will be a lot of focus on geometric quotients coming from compact Lie group… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Watts, J. (2012). Diffeologies, Differential Spaces, and Symplectic Geometry. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/34959

Chicago Manual of Style (16th Edition):

Watts, Jordan. “Diffeologies, Differential Spaces, and Symplectic Geometry.” 2012. Doctoral Dissertation, University of Toronto. Accessed August 11, 2020. http://hdl.handle.net/1807/34959.

MLA Handbook (7th Edition):

Watts, Jordan. “Diffeologies, Differential Spaces, and Symplectic Geometry.” 2012. Web. 11 Aug 2020.

Vancouver:

Watts J. Diffeologies, Differential Spaces, and Symplectic Geometry. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/1807/34959.

Council of Science Editors:

Watts J. Diffeologies, Differential Spaces, and Symplectic Geometry. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/34959

20. Shen, Xin. Unramified computation of tensor L-functions on symplectic groups.

Degree: 2013, University of Minnesota

 Tensor L-function is one of the important cases in the Langlands conjecture on the analytic properties of L-functions. Using the method of Rankin-Selberg convolution, Ginzburg,… (more)

Subjects/Keywords: Fourier-Jacobi model; L-function; Non-generic; Symplectic group; Umramified; Whittaker-Shintani function

…tensor Lfunctions for G × GLn where G is a classical group. Assume that we know enough analytic… …split reductive algebraic group over a number field F . Let A be the Adele ring of F . We let… …G∞ = v|∞ G(Fv ) and g∞ be the Lie algebra of G∞ (viewed as a real group… …analytic group L G to G, which is called the L-group of G. Then by the Satake isomorphism each… …H is a split classical group, and when r is the standard representation of L H ×L GLn . We… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shen, X. (2013). Unramified computation of tensor L-functions on symplectic groups. (Thesis). University of Minnesota. Retrieved from http://purl.umn.edu/156231

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shen, Xin. “Unramified computation of tensor L-functions on symplectic groups.” 2013. Thesis, University of Minnesota. Accessed August 11, 2020. http://purl.umn.edu/156231.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shen, Xin. “Unramified computation of tensor L-functions on symplectic groups.” 2013. Web. 11 Aug 2020.

Vancouver:

Shen X. Unramified computation of tensor L-functions on symplectic groups. [Internet] [Thesis]. University of Minnesota; 2013. [cited 2020 Aug 11]. Available from: http://purl.umn.edu/156231.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Unramified computation of tensor L-functions on symplectic groups. [Thesis]. University of Minnesota; 2013. Available from: http://purl.umn.edu/156231

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

21. Chan, Ping Shun. Invariant representations of GSp(2).

Degree: PhD, Mathematics, 2005, The Ohio State University

 Let F be a number field or a p-adic field. We introduce in Chapter 2 of this work two reductive rank one F-groups, H1, H2,… (more)

Subjects/Keywords: Mathematics; Automorphic representations; Langlands Functoriality; Lifting; Harmonic analysis on p-adic groups; Symplectic group of similitudes; GSp(2); { m GSp}(2); GSp(4); { m GSp}(4)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, P. S. (2005). Invariant representations of GSp(2). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

Chicago Manual of Style (16th Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Doctoral Dissertation, The Ohio State University. Accessed August 11, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

MLA Handbook (7th Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Web. 11 Aug 2020.

Vancouver:

Chan PS. Invariant representations of GSp(2). [Internet] [Doctoral dissertation]. The Ohio State University; 2005. [cited 2020 Aug 11]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

Council of Science Editors:

Chan PS. Invariant representations of GSp(2). [Doctoral Dissertation]. The Ohio State University; 2005. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

22. Jena, Andrew. Partitioning Pauli Operators: in Theory and in Practice.

Degree: 2019, University of Waterloo

 Measuring the expectation value of Pauli operators on prepared quantum states is a fundamental task in the variational quantum eigensolver. Simultaneously measuring sets of operators… (more)

Subjects/Keywords: Clifford group; Pauli operators; partitioning; graph coloring; Singer cycles; VQE; variational quantum eigensolver; MUBs; mutually unbiased bases; symplectic representation; NP-hard

…Definition i j 2 Let Pq denote the generalized Pauli group (ignoring phases)… …Nn 0 j` `=1 Xq Zq : j` ∈ Z/qZ . In the generalized Clifford group, Nn 0 j` Since = q n… …sets a minimal partition if it has exactly q n + 1 parts. 2 We now introduce the symplectic… …x28;Z/qZ)2n , its symplectic form. We shall switch between the normal and symplectic… …be commuting in our symplectic notation. This is captured by the symplectic inner product… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jena, A. (2019). Partitioning Pauli Operators: in Theory and in Practice. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/15017

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jena, Andrew. “Partitioning Pauli Operators: in Theory and in Practice.” 2019. Thesis, University of Waterloo. Accessed August 11, 2020. http://hdl.handle.net/10012/15017.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jena, Andrew. “Partitioning Pauli Operators: in Theory and in Practice.” 2019. Web. 11 Aug 2020.

Vancouver:

Jena A. Partitioning Pauli Operators: in Theory and in Practice. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/10012/15017.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jena A. Partitioning Pauli Operators: in Theory and in Practice. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/15017

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

23. Ott, Andreas Michael Johannes. The non-local sympletic vortex equations and gauged Gromov-Witten invariants.

Degree: 2010, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ott, A. M. J. (2010). The non-local sympletic vortex equations and gauged Gromov-Witten invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152597

Chicago Manual of Style (16th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Doctoral Dissertation, ETH Zürich. Accessed August 11, 2020. http://hdl.handle.net/20.500.11850/152597.

MLA Handbook (7th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Web. 11 Aug 2020.

Vancouver:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Aug 11]. Available from: http://hdl.handle.net/20.500.11850/152597.

Council of Science Editors:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152597

.