Advanced search options
You searched for subject:(Symplectic duality)
.
Showing records 1 – 5 of
5 total matches.
▼ Search Limiters
1. Hilburn, Justin. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.
Degree: PhD, Department of Mathematics, 2016, University of Oregon
URL: http://hdl.handle.net/1794/20456
Subjects/Keywords: 3d N=4; Boundary condition; Category O; Hypertoric; Symplectic duality; Symplectic resolution
…56 ix CHAPTER I INTRODUCTION Symplectic duality, as introduced by Braden, Licata… …theory of symplectic duality and the physical theory of 3d mirror symmetry, as introduced by… …symplectic duality. This dissertation is devoted to proving, in the abelian case, a conjecture from… …of deformation quantization modules associated to certain pairs of symplectic cones. All… …known symplectic dual pairs arise from physics as Higgs and Coulomb branches of the moduli…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hilburn, J. (2016). GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/20456
Chicago Manual of Style (16th Edition):
Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Doctoral Dissertation, University of Oregon. Accessed January 15, 2021. http://hdl.handle.net/1794/20456.
MLA Handbook (7th Edition):
Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Web. 15 Jan 2021.
Vancouver:
Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Internet] [Doctoral dissertation]. University of Oregon; 2016. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/1794/20456.
Council of Science Editors:
Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Doctoral Dissertation]. University of Oregon; 2016. Available from: http://hdl.handle.net/1794/20456
Kyoto University / 京都大学
2. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.
Degree: 博士(理学), 2015, Kyoto University / 京都大学
URL: http://hdl.handle.net/2433/200429
;
http://dx.doi.org/10.14989/doctor.k19166
新制・課程博士
甲第19166号
理博第4106号
Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Thesis, Kyoto University / 京都大学. Accessed January 15, 2021. http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Web. 15 Jan 2021.
Vancouver:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Internet] [Thesis]. Kyoto University / 京都大学; 2015. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Thesis]. Kyoto University / 京都大学; 2015. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Kyoto University
3. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .
Degree: 2015, Kyoto University
URL: http://hdl.handle.net/2433/200429
Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/200429
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Thesis, Kyoto University. Accessed January 15, 2021. http://hdl.handle.net/2433/200429.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Web. 15 Jan 2021.
Vancouver:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Internet] [Thesis]. Kyoto University; 2015. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/2433/200429.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Thesis]. Kyoto University; 2015. Available from: http://hdl.handle.net/2433/200429
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
ETH Zürich
4. Jerby, Yochai. Deformation and duality from the symplectic point of view.
Degree: 2012, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/153324
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KÄHLER-MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); KÄHLER MANIFOLDS (TOPOLOGY); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jerby, Y. (2012). Deformation and duality from the symplectic point of view. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153324
Chicago Manual of Style (16th Edition):
Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Doctoral Dissertation, ETH Zürich. Accessed January 15, 2021. http://hdl.handle.net/20.500.11850/153324.
MLA Handbook (7th Edition):
Jerby, Yochai. “Deformation and duality from the symplectic point of view.” 2012. Web. 15 Jan 2021.
Vancouver:
Jerby Y. Deformation and duality from the symplectic point of view. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/20.500.11850/153324.
Council of Science Editors:
Jerby Y. Deformation and duality from the symplectic point of view. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153324
ETH Zürich
5. Membrez, Cedric. Quantum invariants and Lagrangian topology.
Degree: 2014, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/97458
Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); TOPOLOGIE (MATHEMATIK); TOPOLOGY (MATHEMATICS); DIFFERENTIALGEOMETRIE IN SYMPLEKTISCHEN RÄUMEN; HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); DIFFERENTIAL GEOMETRY IN SYMPLECTIC SPACES; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Membrez, C. (2014). Quantum invariants and Lagrangian topology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/97458
Chicago Manual of Style (16th Edition):
Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Doctoral Dissertation, ETH Zürich. Accessed January 15, 2021. http://hdl.handle.net/20.500.11850/97458.
MLA Handbook (7th Edition):
Membrez, Cedric. “Quantum invariants and Lagrangian topology.” 2014. Web. 15 Jan 2021.
Vancouver:
Membrez C. Quantum invariants and Lagrangian topology. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Jan 15]. Available from: http://hdl.handle.net/20.500.11850/97458.
Council of Science Editors:
Membrez C. Quantum invariants and Lagrangian topology. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/97458