Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Superconvergence)`

.
Showing records 1 – 16 of
16 total matches.

▼ Search Limiters

1. Gallinato Contino, Olivier. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.

Degree: Docteur es, Mathématiques appliquées et calcul scientifique, 2016, Bordeaux

URL: http://www.theses.fr/2016BORD0257

►

Cette thèse présente des travaux concernant des phénomènes d'invasion tumorale, aux échelles tissulaire et cellulaire. La première partie est consacrée à deux modèles mathématiques continus.… (more)

Subjects/Keywords: Cancer; Invadopodia; Problème d’interface mobile; Superconvergence; Cancer; Invadopodia; Free-boundary problem; Superconvergence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gallinato Contino, O. (2016). Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2016BORD0257

Chicago Manual of Style (16^{th} Edition):

Gallinato Contino, Olivier. “Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.” 2016. Doctoral Dissertation, Bordeaux. Accessed January 24, 2021. http://www.theses.fr/2016BORD0257.

MLA Handbook (7^{th} Edition):

Gallinato Contino, Olivier. “Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.” 2016. Web. 24 Jan 2021.

Vancouver:

Gallinato Contino O. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. [Internet] [Doctoral dissertation]. Bordeaux; 2016. [cited 2021 Jan 24]. Available from: http://www.theses.fr/2016BORD0257.

Council of Science Editors:

Gallinato Contino O. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. [Doctoral Dissertation]. Bordeaux; 2016. Available from: http://www.theses.fr/2016BORD0257

University of Waterloo

2.
Chalmers, Noel.
* Superconvergence*, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.

Degree: 2015, University of Waterloo

URL: http://hdl.handle.net/10012/9652

► This thesis is concerned with the investigation of the *superconvergence*, superaccuracy, and stability properties of the discontinuous Galerkin (DG) finite element method in one and…
(more)

Subjects/Keywords: finite element; discontinuous Galerkin; dissipation; dispersion; superconvergence; CFL condition

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chalmers, N. (2015). Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/9652

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chalmers, Noel. “Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.” 2015. Thesis, University of Waterloo. Accessed January 24, 2021. http://hdl.handle.net/10012/9652.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chalmers, Noel. “Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.” 2015. Web. 24 Jan 2021.

Vancouver:

Chalmers N. Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10012/9652.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chalmers N. Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/9652

Not specified: Masters Thesis or Doctoral Dissertation

University of California – San Diego

3.
Li, Yuwen.
Some *superconvergence* estimates of mixed and nonconforming finite element methods.

Degree: Mathematics, 2019, University of California – San Diego

URL: http://www.escholarship.org/uc/item/93k1n9pf

► In this dissertation, we develop new *superconvergence* estimates of mixed and nonconforming finite element methods on mildly structured grids, where most pairs of adjacent triangles…
(more)

Subjects/Keywords: Mathematics; Applied mathematics; elliptic equations; mildly structured grids; mixed methods; nonconforming methods; recovery; superconvergence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, Y. (2019). Some superconvergence estimates of mixed and nonconforming finite element methods. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/93k1n9pf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Li, Yuwen. “Some superconvergence estimates of mixed and nonconforming finite element methods.” 2019. Thesis, University of California – San Diego. Accessed January 24, 2021. http://www.escholarship.org/uc/item/93k1n9pf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Li, Yuwen. “Some superconvergence estimates of mixed and nonconforming finite element methods.” 2019. Web. 24 Jan 2021.

Vancouver:

Li Y. Some superconvergence estimates of mixed and nonconforming finite element methods. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2021 Jan 24]. Available from: http://www.escholarship.org/uc/item/93k1n9pf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Li Y. Some superconvergence estimates of mixed and nonconforming finite element methods. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/93k1n9pf

Not specified: Masters Thesis or Doctoral Dissertation

Virginia Tech

4. Mechaii, Idir. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.

Degree: PhD, Mathematics, 2012, Virginia Tech

URL: http://hdl.handle.net/10919/77344

► In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic…
(more)

Subjects/Keywords: a posteriori error estimation; Discontinuous Galerkin method; hyperbolic problems; superconvergence; tetrahedral meshes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mechaii, I. (2012). A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/77344

Chicago Manual of Style (16^{th} Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Doctoral Dissertation, Virginia Tech. Accessed January 24, 2021. http://hdl.handle.net/10919/77344.

MLA Handbook (7^{th} Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Web. 24 Jan 2021.

Vancouver:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10919/77344.

Council of Science Editors:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/77344

The Ohio State University

5. Conroy, Colton J. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.

Degree: PhD, Civil Engineering, 2014, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

► In this dissertation, we present the development and implementation of a high-order, discontinuous Galerkin (DG), three-dimensional coastal ocean circulation and transport model. The model solves…
(more)

Subjects/Keywords: Applied Mathematics; Civil Engineering; discontinuous Galerkin, coastal ocean circulation, finite element methods, superconvergence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Conroy, C. J. (2014). hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

Chicago Manual of Style (16^{th} Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Doctoral Dissertation, The Ohio State University. Accessed January 24, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

MLA Handbook (7^{th} Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Web. 24 Jan 2021.

Vancouver:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Internet] [Doctoral dissertation]. The Ohio State University; 2014. [cited 2021 Jan 24]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

Council of Science Editors:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Doctoral Dissertation]. The Ohio State University; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

University of Toronto

6. Boom, Pieter David. High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation.

Degree: PhD, 2015, University of Toronto

URL: http://hdl.handle.net/1807/70914

► Unsteady computational fluid dynamics (CFD) is increasingly becoming a critical tool in the development of emerging technologies and modern aircraft. In spite of rapid mathematical…
(more)

Subjects/Keywords: Computational fluid dynamics; Generalized summation by parts; Implicit time marching; Stiff initial value problems; Superconvergence; 0538

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Boom, P. D. (2015). High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/70914

Chicago Manual of Style (16^{th} Edition):

Boom, Pieter David. “High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation.” 2015. Doctoral Dissertation, University of Toronto. Accessed January 24, 2021. http://hdl.handle.net/1807/70914.

MLA Handbook (7^{th} Edition):

Boom, Pieter David. “High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation.” 2015. Web. 24 Jan 2021.

Vancouver:

Boom PD. High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation. [Internet] [Doctoral dissertation]. University of Toronto; 2015. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/1807/70914.

Council of Science Editors:

Boom PD. High-order Implicit Time-marching Methods for Unsteady Fluid Flow Simulation. [Doctoral Dissertation]. University of Toronto; 2015. Available from: http://hdl.handle.net/1807/70914

7.
Padilla, Peter A.
* Superconvergence* in Iterated Solutions of Integral Equations.

Degree: PhD, Mathematics and Statistics, 1998, Old Dominion University

URL: 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44

► In this thesis, we investigate the *superconvergence* phenomenon of the iterated numerical solutions for the Fredholm integral equations of the second kind as well…
(more)

Subjects/Keywords: Fredholm equations; Galerkin methods; Hammerstein equations; Superconvergence; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Padilla, P. A. (1998). Superconvergence in Iterated Solutions of Integral Equations. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44

Chicago Manual of Style (16^{th} Edition):

Padilla, Peter A. “Superconvergence in Iterated Solutions of Integral Equations.” 1998. Doctoral Dissertation, Old Dominion University. Accessed January 24, 2021. 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44.

MLA Handbook (7^{th} Edition):

Padilla, Peter A. “Superconvergence in Iterated Solutions of Integral Equations.” 1998. Web. 24 Jan 2021.

Vancouver:

Padilla PA. Superconvergence in Iterated Solutions of Integral Equations. [Internet] [Doctoral dissertation]. Old Dominion University; 1998. [cited 2021 Jan 24]. Available from: 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44.

Council of Science Editors:

Padilla PA. Superconvergence in Iterated Solutions of Integral Equations. [Doctoral Dissertation]. Old Dominion University; 1998. Available from: 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44

8. Steiner, Christophe. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.

Degree: Docteur es, Mathématiques appliquées, 2014, Université de Strasbourg

URL: http://www.theses.fr/2014STRAD033

►

Cette thèse propose et analyse des méthodes numériques pour la résolution de l'équation de Vlasov. Cette équation modélise l'évolution d'une espèce de particules chargées sous… (more)

Subjects/Keywords: Equation de Vlasov; Méthodes semi-Lagrangiennes; Equations équivalentes; Superconvergence; GPU; Gyromoyenne; Equation de quasi-neutralité; Modèle gyrocinétique; Vlasov equation; Semi-Lagrangian methods; Equivalent equations; Superconvergence; GPU; Gyrokinetic model; Gyroaverage; Quasi-neutrality equation; 515; 518; 533.7

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Steiner, C. (2014). Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2014STRAD033

Chicago Manual of Style (16^{th} Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Doctoral Dissertation, Université de Strasbourg. Accessed January 24, 2021. http://www.theses.fr/2014STRAD033.

MLA Handbook (7^{th} Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Web. 24 Jan 2021.

Vancouver:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2014. [cited 2021 Jan 24]. Available from: http://www.theses.fr/2014STRAD033.

Council of Science Editors:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Doctoral Dissertation]. Université de Strasbourg; 2014. Available from: http://www.theses.fr/2014STRAD033

Delft University of Technology

9. Li, X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.

Degree: 2015, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a

► In this dissertation, we focus on exploiting *superconvergence* for discontinuous Galerkin methods and constructing a *superconvergence* extraction technique, in particular, Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. The…
(more)

Subjects/Keywords: Discontinuous Galerkin method; post-processing; superconvergence; nonuniform meshes; SIAC filtering; boundaries

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, X. (2015). Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a

Chicago Manual of Style (16^{th} Edition):

Li, X. “Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.” 2015. Doctoral Dissertation, Delft University of Technology. Accessed January 24, 2021. http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a.

MLA Handbook (7^{th} Edition):

Li, X. “Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.” 2015. Web. 24 Jan 2021.

Vancouver:

Li X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. [Internet] [Doctoral dissertation]. Delft University of Technology; 2015. [cited 2021 Jan 24]. Available from: http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a.

Council of Science Editors:

Li X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. [Doctoral Dissertation]. Delft University of Technology; 2015. Available from: http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a

Virginia Tech

10.
Baccouch, Mahboub.
* Superconvergence* and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.

Degree: PhD, Mathematics, 2008, Virginia Tech

URL: http://hdl.handle.net/10919/26331

► In this thesis, we present new *superconvergence* properties of discontinuous Galerkin (DG) methods for two-dimensional hyperbolic problems. We investigate the *superconvergence* properties of the DG…
(more)

Subjects/Keywords: hyperbolic problems; a posteriori errorestimates; Discontinuous Galerkin method; triangular meshes; superconvergence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Baccouch, M. (2008). Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26331

Chicago Manual of Style (16^{th} Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Doctoral Dissertation, Virginia Tech. Accessed January 24, 2021. http://hdl.handle.net/10919/26331.

MLA Handbook (7^{th} Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Web. 24 Jan 2021.

Vancouver:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2008. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10919/26331.

Council of Science Editors:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Doctoral Dissertation]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/26331

Virginia Tech

11. Temimi, Helmi. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.

Degree: PhD, Mathematics, 2008, Virginia Tech

URL: http://hdl.handle.net/10919/26454

► We propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal convergence rate in the…
(more)

Subjects/Keywords: Superconvergence; Discontinuous Galerkin Method; a posteriori error estimation; wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Temimi, H. (2008). A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26454

Chicago Manual of Style (16^{th} Edition):

Temimi, Helmi. “A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.” 2008. Doctoral Dissertation, Virginia Tech. Accessed January 24, 2021. http://hdl.handle.net/10919/26454.

MLA Handbook (7^{th} Edition):

Temimi, Helmi. “A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.” 2008. Web. 24 Jan 2021.

Vancouver:

Temimi H. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. [Internet] [Doctoral dissertation]. Virginia Tech; 2008. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10919/26454.

Council of Science Editors:

Temimi H. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. [Doctoral Dissertation]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/26454

12.
Novaprateep, Boriboon.
* Superconvergence* of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.

Degree: PhD, Mathematics and Statistics, 2003, Old Dominion University

URL: 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31

► In this dissertation, we develop the Petrov-Galerkin method and the iterated Petrov-Galerkin method for a class of nonlinear Hammerstein equation. We also investigate the…
(more)

Subjects/Keywords: Integral equations; Iterated solutions; Linear integral equations; Nonlinear integral equations; Superconvergence; Wavelet; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Novaprateep, B. (2003). Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31

Chicago Manual of Style (16^{th} Edition):

Novaprateep, Boriboon. “Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.” 2003. Doctoral Dissertation, Old Dominion University. Accessed January 24, 2021. 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31.

MLA Handbook (7^{th} Edition):

Novaprateep, Boriboon. “Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.” 2003. Web. 24 Jan 2021.

Vancouver:

Novaprateep B. Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. [Internet] [Doctoral dissertation]. Old Dominion University; 2003. [cited 2021 Jan 24]. Available from: 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31.

Council of Science Editors:

Novaprateep B. Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. [Doctoral Dissertation]. Old Dominion University; 2003. Available from: 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31

NSYSU

13.
Huang, Hung-Tsai.
Global *Superconvergence* of Finite Element Methods for Elliptic Equations.

Degree: PhD, Applied Mathematics, 2003, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737

► In the dissertation we discuss the rectangular elements, Adini's elements and p-order Lagrange elements, which were constructed in the rectangular finite spaces. The special rectangular…
(more)

Subjects/Keywords: global superconvergence; Lagrange elements; singularity; combined methods; posteriori interpolant; Adiniâs element; finite element methods; blending curves.; elliptic equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huang, H. (2003). Global Superconvergence of Finite Element Methods for Elliptic Equations. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737

Chicago Manual of Style (16^{th} Edition):

Huang, Hung-Tsai. “Global Superconvergence of Finite Element Methods for Elliptic Equations.” 2003. Doctoral Dissertation, NSYSU. Accessed January 24, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737.

MLA Handbook (7^{th} Edition):

Huang, Hung-Tsai. “Global Superconvergence of Finite Element Methods for Elliptic Equations.” 2003. Web. 24 Jan 2021.

Vancouver:

Huang H. Global Superconvergence of Finite Element Methods for Elliptic Equations. [Internet] [Doctoral dissertation]. NSYSU; 2003. [cited 2021 Jan 24]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737.

Council of Science Editors:

Huang H. Global Superconvergence of Finite Element Methods for Elliptic Equations. [Doctoral Dissertation]. NSYSU; 2003. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737

14. Guo, Hailong. Recovery Techniques For Finite Element Methods And Their Applications.

Degree: PhD, Mathematics, 2015, Wayne State University

URL: https://digitalcommons.wayne.edu/oa_dissertations/1313

► Recovery techniques are important post-processing methods to obtain improved approximate solutions from primary data with reasonable cost. The practical us- age of recovery techniques…
(more)

Subjects/Keywords: finite element; gradient recovery; Hessian recovery; polynomial preserving; superconvergence; ultraconvergence; Mathematics

…*superconvergence* property. This chapter is based on our submitted paper [51].
4
CHAPTER 2… …important role in *superconvergence* analysis [32, 71, 109]. Meshes can also be… …presented to illustrate *superconvergence* of the proposed gradient recovery method in Section 3.4… …prove O(h1.5 ) *superconvergence* for the simple averaging method
on uniform mesh of… …and Raviart-Thomas element [76] and the *superconvergence* result of RaviartThomas…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Guo, H. (2015). Recovery Techniques For Finite Element Methods And Their Applications. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1313

Chicago Manual of Style (16^{th} Edition):

Guo, Hailong. “Recovery Techniques For Finite Element Methods And Their Applications.” 2015. Doctoral Dissertation, Wayne State University. Accessed January 24, 2021. https://digitalcommons.wayne.edu/oa_dissertations/1313.

MLA Handbook (7^{th} Edition):

Guo, Hailong. “Recovery Techniques For Finite Element Methods And Their Applications.” 2015. Web. 24 Jan 2021.

Vancouver:

Guo H. Recovery Techniques For Finite Element Methods And Their Applications. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2021 Jan 24]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1313.

Council of Science Editors:

Guo H. Recovery Techniques For Finite Element Methods And Their Applications. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1313

University of Houston

15.
Guo, Wei 1984-.
High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and * Superconvergence*.

Degree: PhD, Mathematics, 2014, University of Houston

URL: http://hdl.handle.net/10657/4738

► High order schemes for transport gain lots of popularity in scientific computing community due to their superior properties, such as high efficiency and high resolution.…
(more)

Subjects/Keywords: High order scheme; Transport equation; Semi-Lagrangian scheme; Vlasov-Poisson system; Global transport modeling; Discontinuous Galerkin scheme; WENO scheme; Strang splitting; Hybrid methodology; Integral deferred correction; Superconvergence; Lax-Wendroff time discretization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Guo, W. 1. (2014). High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and Superconvergence. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/4738

Chicago Manual of Style (16^{th} Edition):

Guo, Wei 1984-. “High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and Superconvergence.” 2014. Doctoral Dissertation, University of Houston. Accessed January 24, 2021. http://hdl.handle.net/10657/4738.

MLA Handbook (7^{th} Edition):

Guo, Wei 1984-. “High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and Superconvergence.” 2014. Web. 24 Jan 2021.

Vancouver:

Guo W1. High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and Superconvergence. [Internet] [Doctoral dissertation]. University of Houston; 2014. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10657/4738.

Council of Science Editors:

Guo W1. High Order Schemes for Transport Problems: Semi-Lagrangian Schemes with Applications to Plasma Physics and Atmospheric Sciences, and Superconvergence. [Doctoral Dissertation]. University of Houston; 2014. Available from: http://hdl.handle.net/10657/4738

Virginia Tech

16. Weinhart, Thomas. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.

Degree: PhD, Mathematics, 2009, Virginia Tech

URL: http://hdl.handle.net/10919/26571

► In this dissertation we present an analysis for the discontinuous Galerkin discretization error of multi-dimensional first-order linear symmetric and symmetrizable hyperbolic systems of conservation laws.…
(more)

Subjects/Keywords: hyperbolic systems of conservation laws; a posteriori error estimation; superconvergence; adaptivity; discontinuous Galerkin method

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Weinhart, T. (2009). A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26571

Chicago Manual of Style (16^{th} Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Doctoral Dissertation, Virginia Tech. Accessed January 24, 2021. http://hdl.handle.net/10919/26571.

MLA Handbook (7^{th} Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Web. 24 Jan 2021.

Vancouver:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Internet] [Doctoral dissertation]. Virginia Tech; 2009. [cited 2021 Jan 24]. Available from: http://hdl.handle.net/10919/26571.

Council of Science Editors:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Doctoral Dissertation]. Virginia Tech; 2009. Available from: http://hdl.handle.net/10919/26571