Advanced search options
You searched for subject:(Strukturmechanik)
.
Showing records 1 – 7 of
7 total matches.
▼ Search Limiters
1. Kumor, Dustin. Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen.
Degree: 2020, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-21148
Subjects/Keywords: Strukturmechanik; A posteriori Fehlerschätzer; Dual gewichtete Residuen; DWR-Methode; Adaptive Finite Elemente Methoden; Modelladaptivität; 510; Finite-Elemente-Methode; Adaptives Gitter; A-posteriori-Abschätzung; Fehlerabschätzung; Strukturmechanik
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kumor, D. (2020). Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-21148
Chicago Manual of Style (16th Edition):
Kumor, Dustin. “Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen.” 2020. Doctoral Dissertation, Technische Universität Dortmund. Accessed April 13, 2021. http://dx.doi.org/10.17877/DE290R-21148.
MLA Handbook (7th Edition):
Kumor, Dustin. “Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen.” 2020. Web. 13 Apr 2021.
Vancouver:
Kumor D. Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2020. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.17877/DE290R-21148.
Council of Science Editors:
Kumor D. Ein allgemeines Konzept für adaptive Finite Elemente Methoden bei modifizierten diskreten Formulierungen. [Doctoral Dissertation]. Technische Universität Dortmund; 2020. Available from: http://dx.doi.org/10.17877/DE290R-21148
2. Kleemann, Heiko. Adaptive FEM für Mehrkörperkontaktprobleme.
Degree: 2011, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/29117
Subjects/Keywords: Adaptive finite Elemente; A posteriori; A priori; Dual gewichtet; DWR; Fehlerschätzer; FEM; Kontakt; Sattelpunkt; Strukturmechanik; Variationsungleichung; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kleemann, H. (2011). Adaptive FEM für Mehrkörperkontaktprobleme. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29117
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Kleemann, Heiko. “Adaptive FEM für Mehrkörperkontaktprobleme.” 2011. Thesis, Technische Universität Dortmund. Accessed April 13, 2021. http://hdl.handle.net/2003/29117.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Kleemann, Heiko. “Adaptive FEM für Mehrkörperkontaktprobleme.” 2011. Web. 13 Apr 2021.
Vancouver:
Kleemann H. Adaptive FEM für Mehrkörperkontaktprobleme. [Internet] [Thesis]. Technische Universität Dortmund; 2011. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2003/29117.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Kleemann H. Adaptive FEM für Mehrkörperkontaktprobleme. [Thesis]. Technische Universität Dortmund; 2011. Available from: http://hdl.handle.net/2003/29117
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
3. Kleemann, Heiko. Adaptive FEM für Mehrkörperkontaktprobleme.
Degree: 2011, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-3033
Subjects/Keywords: Adaptive finite Elemente; A posteriori; A priori; Dual gewichtet; DWR; Fehlerschätzer; FEM; Kontakt; Sattelpunkt; Strukturmechanik; Variationsungleichung; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kleemann, H. (2011). Adaptive FEM für Mehrkörperkontaktprobleme. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-3033
Chicago Manual of Style (16th Edition):
Kleemann, Heiko. “Adaptive FEM für Mehrkörperkontaktprobleme.” 2011. Doctoral Dissertation, Technische Universität Dortmund. Accessed April 13, 2021. http://dx.doi.org/10.17877/DE290R-3033.
MLA Handbook (7th Edition):
Kleemann, Heiko. “Adaptive FEM für Mehrkörperkontaktprobleme.” 2011. Web. 13 Apr 2021.
Vancouver:
Kleemann H. Adaptive FEM für Mehrkörperkontaktprobleme. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2011. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.17877/DE290R-3033.
Council of Science Editors:
Kleemann H. Adaptive FEM für Mehrkörperkontaktprobleme. [Doctoral Dissertation]. Technische Universität Dortmund; 2011. Available from: http://dx.doi.org/10.17877/DE290R-3033
4. Materna, Daniel. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.
Degree: 2009, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/26542
Subjects/Keywords: Configurational mechanics; Duality techniques; Energy minimization; Error estimator for sensitivities; Exact sensitivity relation; Goal-oriented r-adaptivity; Mesh optimization; Shape optimization; Variational principles; Variational sensitivity analysis; 690; Sensitivitätsanalyse; Strukturmechanik
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Materna, D. (2009). Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/26542
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Materna, Daniel. “Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.” 2009. Thesis, Technische Universität Dortmund. Accessed April 13, 2021. http://hdl.handle.net/2003/26542.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Materna, Daniel. “Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.” 2009. Web. 13 Apr 2021.
Vancouver:
Materna D. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. [Internet] [Thesis]. Technische Universität Dortmund; 2009. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2003/26542.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Materna D. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. [Thesis]. Technische Universität Dortmund; 2009. Available from: http://hdl.handle.net/2003/26542
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
5. Materna, Daniel. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.
Degree: 2009, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-474
Subjects/Keywords: Variational principles; Energy minimization; Variational sensitivity analysis; Duality techniques; Configurational mechanics; Mesh optimization; Goal-oriented r-adaptivity; Shape optimization; Exact sensitivity relation; Error estimator for sensitivities; 690; Strukturmechanik; Sensitivitätsanalyse
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Materna, D. (2009). Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-474
Chicago Manual of Style (16th Edition):
Materna, Daniel. “Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.” 2009. Doctoral Dissertation, Technische Universität Dortmund. Accessed April 13, 2021. http://dx.doi.org/10.17877/DE290R-474.
MLA Handbook (7th Edition):
Materna, Daniel. “Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces.” 2009. Web. 13 Apr 2021.
Vancouver:
Materna D. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2009. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.17877/DE290R-474.
Council of Science Editors:
Materna D. Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. [Doctoral Dissertation]. Technische Universität Dortmund; 2009. Available from: http://dx.doi.org/10.17877/DE290R-474
6. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.
Degree: 2010, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/26998
Subjects/Keywords: Adaptive coarse grid correction; Adaptive Grobgitterkorrektur; Damped Newton-Raphson; Domain decomposition; Elasticity; Elastizität; Elastodynamic; Elastodynamisch; Elastostatic; Elastostatisch; Equal-order finite elements; FEAST; FEAST; Festkörpermechanik; Finite deformation; Finite Deformation; Finite-Elemente-Methode; Finite element method; Gebietszerlegung; Gedämpftes Newton-Raphson; Gemischte Formulierung; Globales Newton-Raphson; Global Newton-Raphson; Große Deformation; Großskalig; Hardware-oriented; Hardware-orientiert; High performance computing; Incompressible material; Inexact Newton-Raphson; Inexaktes Newton-Raphson; Inkompressibles Material; Irreguläres Gitter; Irregular grids; Iterativer Löser; Iterative solver; Large deformation; Large-scale; LBB stabilisation; LBB Stabilisierung; Line-search; Liniensuche; Mehrgitter; Mehrgitter-Krylov; Minimale Überlappung; Minimal overlap; Mixed formulation; Multigrid; Multigrid-Krylov; Multilevel; Multilevel; Newton-Raphson; Nicht-konformes Mehrgitter; Nonconforming multigrid; Parallel computing; Parallele Effizienz; Parallel efficiency; Paralleles Rechnen; Saddle point problem; Sattelpunkt-Problem; ScaRC; ScaRC; Schubversteifung; Schur complement preconditioning; Schurkomplement-Vorkonditionierer; Shear locking; Solid mechanics; Structural mechanics; Strukturmechanik; Transient; Vanka; Vanka; Volume locking; Volumenversteifung; Zeitabhängig; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/26998
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Thesis, Technische Universität Dortmund. Accessed April 13, 2021. http://hdl.handle.net/2003/26998.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 13 Apr 2021.
Vancouver:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Thesis]. Technische Universität Dortmund; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2003/26998.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Thesis]. Technische Universität Dortmund; 2010. Available from: http://hdl.handle.net/2003/26998
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
7. Wobker, Hilmar. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.
Degree: 2010, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-497
Subjects/Keywords: Iterativer Löser; Multilevel; Mehrgitter; Gebietszerlegung; Mehrgitter-Krylov; Nicht-konformes Mehrgitter; ScaRC; Adaptive Grobgitterkorrektur; Minimale Überlappung; Sattelpunkt-Problem; Schurkomplement-Vorkonditionierer; Vanka; Gedämpftes Newton-Raphson; Globales Newton-Raphson; Inexaktes Newton-Raphson; Liniensuche; FEAST; Hardware-orientiert; Großskalig; Paralleles Rechnen; Parallele Effizienz; Finite-Elemente-Methode; Gemischte Formulierung; LBB Stabilisierung; Irreguläres Gitter; Festkörpermechanik; Strukturmechanik; Elastizität; Elastostatisch; Elastodynamisch; Zeitabhängig; Inkompressibles Material; Finite Deformation; Große Deformation; Volumenversteifung; Schubversteifung; Iterative solver; Multilevel; Multigrid; Domain decomposition; Multigrid-Krylov; Nonconforming multigrid; ScaRC; Adaptive coarse grid correction; Minimal overlap; Saddle point problem; Schur complement preconditioning; Vanka; Newton-Raphson; Damped Newton-Raphson; Global Newton-Raphson; Inexact Newton-Raphson; Line-search; FEAST; High performance computing; Hardware-oriented; Large-scale; Parallel computing; Parallel efficiency; Finite element method; Mixed formulation; LBB stabilisation; Equal-order finite elements; Irregular grids; Solid mechanics; Structural mechanics; Elasticity; Elastostatic; Elastodynamic; Transient; Incompressible material; Finite deformation; Large deformation; Volume locking; Shear locking; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wobker, H. (2010). Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-497
Chicago Manual of Style (16th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Doctoral Dissertation, Technische Universität Dortmund. Accessed April 13, 2021. http://dx.doi.org/10.17877/DE290R-497.
MLA Handbook (7th Edition):
Wobker, Hilmar. “Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems.” 2010. Web. 13 Apr 2021.
Vancouver:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2010. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.17877/DE290R-497.
Council of Science Editors:
Wobker H. Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems. [Doctoral Dissertation]. Technische Universität Dortmund; 2010. Available from: http://dx.doi.org/10.17877/DE290R-497