Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Structures de Calabi Yau faibles). Showing records 1 – 30 of 379906 total matches.

[1] [2] [3] [4] [5] … [12664]

Search Limiters

Last 2 Years | English Only

Languages

Country

▼ Search Limiters


Université de Montréal

1. Campling, Emily. Fukaya categories of Lagrangian cobordisms and duality.

Degree: 2019, Université de Montréal

Subjects/Keywords: symplectic topology; Lagrangian submanifolds; Floer homology; Fukaya categories; derived Fukaya categories; Lagrangian cobordisms; Lagrangian surgery; weak Calabi- Yau structures; Topologie symplectique; Sous-variétés lagrangiennes; Homologie de Floer; Catégories de Fukaya; Catégories de Fukaya dérivées; Cobordismes lagrangiens; Chirurgie lagrangienne; Structures de Calabi-Yau faibles; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campling, E. (2019). Fukaya categories of Lagrangian cobordisms and duality. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Thesis, Université de Montréal. Accessed March 07, 2021. http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Web. 07 Mar 2021.

Vancouver:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

2. Novoseltsev, Andrey Y. Calabi-Yau hypersurfaces and complete intersections in toric varieties.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2011, University of Alberta

 In this thesis we report on several projects that stemmed out from an attempt to obtain an example for the last class in Doran-Morgan classification… (more)

Subjects/Keywords: Calabi-Yau; Sage; toric

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Novoseltsev, A. Y. (2011). Calabi-Yau hypersurfaces and complete intersections in toric varieties. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/kd17ct13d

Chicago Manual of Style (16th Edition):

Novoseltsev, Andrey Y. “Calabi-Yau hypersurfaces and complete intersections in toric varieties.” 2011. Doctoral Dissertation, University of Alberta. Accessed March 07, 2021. https://era.library.ualberta.ca/files/kd17ct13d.

MLA Handbook (7th Edition):

Novoseltsev, Andrey Y. “Calabi-Yau hypersurfaces and complete intersections in toric varieties.” 2011. Web. 07 Mar 2021.

Vancouver:

Novoseltsev AY. Calabi-Yau hypersurfaces and complete intersections in toric varieties. [Internet] [Doctoral dissertation]. University of Alberta; 2011. [cited 2021 Mar 07]. Available from: https://era.library.ualberta.ca/files/kd17ct13d.

Council of Science Editors:

Novoseltsev AY. Calabi-Yau hypersurfaces and complete intersections in toric varieties. [Doctoral Dissertation]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/kd17ct13d


Universidade Estadual de Campinas

3. Correa, Eder de Moraes, 1986-. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.

Degree: 2017, Universidade Estadual de Campinas

 Abstract: The purpose of this thesis is to study Hamiltonian integrable systems in coadjoint orbits and topics related to its applications. This work is essentially… (more)

Subjects/Keywords: Lie, Teoria de; Geometria simplética; Sistemas hamiltonianos; Calabi-Yau, Variedades de; Geometria diferencial; Lie theory; Symplectic geometry; Hamiltonian systems; Calabi-Yau manifolds; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Correa, Eder de Moraes, 1. (2017). Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Thesis, Universidade Estadual de Campinas. Accessed March 07, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Web. 07 Mar 2021.

Vancouver:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Internet] [Thesis]. Universidade Estadual de Campinas; 2017. [cited 2021 Mar 07]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Thesis]. Universidade Estadual de Campinas; 2017. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Uppsala University

4. Passaro, Davide. Model building on gCICYs.

Degree: Physics and Astronomy, 2020, Uppsala University

Prompted by the success of heterotic line bundle model building on Complete Intersection Calabi Yau (CICY) manifolds and the new developments regarding a generalization… (more)

Subjects/Keywords: Mathematical Physics; Geometry; Calabi Yau; Complete Intersection Calabi Yau; Generalized Complete Intersection Calabi Yau; Other Physics Topics; Annan fysik; Geometry; Geometri

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Passaro, D. (2020). Model building on gCICYs. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411813

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Passaro, Davide. “Model building on gCICYs.” 2020. Thesis, Uppsala University. Accessed March 07, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411813.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Passaro, Davide. “Model building on gCICYs.” 2020. Web. 07 Mar 2021.

Vancouver:

Passaro D. Model building on gCICYs. [Internet] [Thesis]. Uppsala University; 2020. [cited 2021 Mar 07]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411813.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Passaro D. Model building on gCICYs. [Thesis]. Uppsala University; 2020. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411813

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Georgia

5. Rusinko, Jo. Equivalence of mirror families constructed by toric degenerations of flag varieties.

Degree: 2014, University of Georgia

 Batyrev (et. al.) constructed a family of Calabi-Yau varieties using small toric degen- erations of the full flag variety G/B. They conjecture this family to… (more)

Subjects/Keywords: Calabi-Yau; Mirror Symmetry; Toric Degenerations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rusinko, J. (2014). Equivalence of mirror families constructed by toric degenerations of flag varieties. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/24268

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rusinko, Jo. “Equivalence of mirror families constructed by toric degenerations of flag varieties.” 2014. Thesis, University of Georgia. Accessed March 07, 2021. http://hdl.handle.net/10724/24268.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rusinko, Jo. “Equivalence of mirror families constructed by toric degenerations of flag varieties.” 2014. Web. 07 Mar 2021.

Vancouver:

Rusinko J. Equivalence of mirror families constructed by toric degenerations of flag varieties. [Internet] [Thesis]. University of Georgia; 2014. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10724/24268.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rusinko J. Equivalence of mirror families constructed by toric degenerations of flag varieties. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/24268

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

6. Efe, Bariş. Calabi-Yau submanifolds of Joyce manifolds of the first kind.

Degree: 2011, Michigan State University

Thesis Ph. D. Michigan State University. Mathematics 2011.

Akbulut and Salur suggested the study of Calabi-Yau submanifolds of G2 manifolds that come from a certain… (more)

Subjects/Keywords: Manifolds (Mathematics); Calabi-Yau manifolds; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Efe, B. (2011). Calabi-Yau submanifolds of Joyce manifolds of the first kind. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:484

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Efe, Bariş. “Calabi-Yau submanifolds of Joyce manifolds of the first kind.” 2011. Thesis, Michigan State University. Accessed March 07, 2021. http://etd.lib.msu.edu/islandora/object/etd:484.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Efe, Bariş. “Calabi-Yau submanifolds of Joyce manifolds of the first kind.” 2011. Web. 07 Mar 2021.

Vancouver:

Efe B. Calabi-Yau submanifolds of Joyce manifolds of the first kind. [Internet] [Thesis]. Michigan State University; 2011. [cited 2021 Mar 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:484.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Efe B. Calabi-Yau submanifolds of Joyce manifolds of the first kind. [Thesis]. Michigan State University; 2011. Available from: http://etd.lib.msu.edu/islandora/object/etd:484

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

7. Hollborn, Henning. L-2-Kohomologie von Calabi-Yau-Familien über Kurven.

Degree: 2014, Johannes Gutenberg Universität Mainz

Ist f: X  →  S eine glatte Familie von Calabi-Yau-Mannigfaltigkeiten der Dimension m über einer quasiprojektiven Kurve, so trägt nach einem Resultat von Zucker die… (more)

Subjects/Keywords: Calabi-Yau-Mannigfaltigkeit; Higgsbündel; Kohomologie; Hodgetheorie; Calabi-Yau manifold; Higgs bundle; Cohomology; Hodge theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hollborn, H. (2014). L-2-Kohomologie von Calabi-Yau-Familien über Kurven. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2014/3692/

Chicago Manual of Style (16th Edition):

Hollborn, Henning. “L-2-Kohomologie von Calabi-Yau-Familien über Kurven.” 2014. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 07, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2014/3692/.

MLA Handbook (7th Edition):

Hollborn, Henning. “L-2-Kohomologie von Calabi-Yau-Familien über Kurven.” 2014. Web. 07 Mar 2021.

Vancouver:

Hollborn H. L-2-Kohomologie von Calabi-Yau-Familien über Kurven. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2014. [cited 2021 Mar 07]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3692/.

Council of Science Editors:

Hollborn H. L-2-Kohomologie von Calabi-Yau-Familien über Kurven. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2014. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3692/


Uppsala University

8. Passaro, Davide. Finiteness of Complete Intersection Calabi Yau Threefolds.

Degree: Theoretical Physics, 2019, Uppsala University

  Of many modern constructions in geometry Calabi Yau manifolds hold special relevance in theoretical physics. These manifolds naturally arise from the study of compactification… (more)

Subjects/Keywords: Mathematical Physics; Geometry; Calabi Yau; Complete Intersection Calabi Yau; Other Physics Topics; Annan fysik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Passaro, D. (2019). Finiteness of Complete Intersection Calabi Yau Threefolds. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Passaro, Davide. “Finiteness of Complete Intersection Calabi Yau Threefolds.” 2019. Thesis, Uppsala University. Accessed March 07, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Passaro, Davide. “Finiteness of Complete Intersection Calabi Yau Threefolds.” 2019. Web. 07 Mar 2021.

Vancouver:

Passaro D. Finiteness of Complete Intersection Calabi Yau Threefolds. [Internet] [Thesis]. Uppsala University; 2019. [cited 2021 Mar 07]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Passaro D. Finiteness of Complete Intersection Calabi Yau Threefolds. [Thesis]. Uppsala University; 2019. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université du Québec à Montréal

9. Tawfik, Selim. Deformations of compact complex manifolds.

Degree: 2015, Université du Québec à Montréal

 Nous examinons quelques aspects élémentaires de la théorie de la déformation des variétés complexes compactes. Cela est fait dans un cadre où l'on s'intéresse à… (more)

Subjects/Keywords: Variétés complexes; Théorie des déformations; Classes de Kodaira-Spencer; Théorèmes d'existence; Variétés de Calabi-Yau; Théorèmes de Tian-Todorov

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tawfik, S. (2015). Deformations of compact complex manifolds. (Thesis). Université du Québec à Montréal. Retrieved from http://www.archipel.uqam.ca/7665/1/M13844.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tawfik, Selim. “Deformations of compact complex manifolds.” 2015. Thesis, Université du Québec à Montréal. Accessed March 07, 2021. http://www.archipel.uqam.ca/7665/1/M13844.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tawfik, Selim. “Deformations of compact complex manifolds.” 2015. Web. 07 Mar 2021.

Vancouver:

Tawfik S. Deformations of compact complex manifolds. [Internet] [Thesis]. Université du Québec à Montréal; 2015. [cited 2021 Mar 07]. Available from: http://www.archipel.uqam.ca/7665/1/M13844.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tawfik S. Deformations of compact complex manifolds. [Thesis]. Université du Québec à Montréal; 2015. Available from: http://www.archipel.uqam.ca/7665/1/M13844.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université du Québec à Montréal

10. Tawfik, Selim. Deformations of compact complex manifolds.

Degree: 2015, Université du Québec à Montréal

 Nous examinons quelques aspects élémentaires de la théorie de la déformation des variétés complexes compactes. Cela est fait dans un cadre où l'on s'intéresse à… (more)

Subjects/Keywords: Variétés complexes; Théorie des déformations; Classes de Kodaira-Spencer; Théorèmes d'existence; Variétés de Calabi-Yau; Théorèmes de Tian-Todorov

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tawfik, S. (2015). Deformations of compact complex manifolds. (Thesis). Université du Québec à Montréal. Retrieved from http://archipel.uqam.ca/7665/1/M13844.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tawfik, Selim. “Deformations of compact complex manifolds.” 2015. Thesis, Université du Québec à Montréal. Accessed March 07, 2021. http://archipel.uqam.ca/7665/1/M13844.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tawfik, Selim. “Deformations of compact complex manifolds.” 2015. Web. 07 Mar 2021.

Vancouver:

Tawfik S. Deformations of compact complex manifolds. [Internet] [Thesis]. Université du Québec à Montréal; 2015. [cited 2021 Mar 07]. Available from: http://archipel.uqam.ca/7665/1/M13844.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tawfik S. Deformations of compact complex manifolds. [Thesis]. Université du Québec à Montréal; 2015. Available from: http://archipel.uqam.ca/7665/1/M13844.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Benedetti, Vladimiro. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.

Degree: Docteur es, Mathématiques. Géométrie algébrique complexe, 2018, Aix Marseille Université

Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser… (more)

Subjects/Keywords: Géométrie algébrique complexe; Espaces homogènes; Actions de groupes algébriques; Fibrés vectoriels; Variétés de Fano; Variétés de Calabi-Yau; Variétés hyper-Kahlériennes; Représentations de carquois; Complex algebraic geometry; Homogeneous spaces; Algebraic group actions; Vector bundles; Fano varieties; Calabi-Yau varieties; Hyper-Kahler varieties; Quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benedetti, V. (2018). Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2018AIXM0224

Chicago Manual of Style (16th Edition):

Benedetti, Vladimiro. “Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.” 2018. Doctoral Dissertation, Aix Marseille Université. Accessed March 07, 2021. http://www.theses.fr/2018AIXM0224.

MLA Handbook (7th Edition):

Benedetti, Vladimiro. “Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.” 2018. Web. 07 Mar 2021.

Vancouver:

Benedetti V. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. [Internet] [Doctoral dissertation]. Aix Marseille Université 2018. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2018AIXM0224.

Council of Science Editors:

Benedetti V. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. [Doctoral Dissertation]. Aix Marseille Université 2018. Available from: http://www.theses.fr/2018AIXM0224


Johannes Gutenberg Universität Mainz

12. Bogner, Michael. On differential operators of Calabi-Yau type.

Degree: 2012, Johannes Gutenberg Universität Mainz

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of n-dimensional Calabi-Yau manifolds whose solutions are integrals of (n,0)-forms over… (more)

Subjects/Keywords: Differenzialoperatoren; Calabi-Yau Mannigfaltigkeiten, Picard-Fuchs Operatoren, starre Monodromietupel; differential operators; Calabi-Yau manifolds; Picard-Fuchs operators; rigid monodromy tuples; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bogner, M. (2012). On differential operators of Calabi-Yau type. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/

Chicago Manual of Style (16th Edition):

Bogner, Michael. “On differential operators of Calabi-Yau type.” 2012. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 07, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/.

MLA Handbook (7th Edition):

Bogner, Michael. “On differential operators of Calabi-Yau type.” 2012. Web. 07 Mar 2021.

Vancouver:

Bogner M. On differential operators of Calabi-Yau type. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2012. [cited 2021 Mar 07]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/.

Council of Science Editors:

Bogner M. On differential operators of Calabi-Yau type. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2012. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/


Johannes Gutenberg Universität Mainz

13. Hofmann, Jörg. Monodromy calculations for some differential equations.

Degree: 2013, Johannes Gutenberg Universität Mainz

In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser… (more)

Subjects/Keywords: Fuchssche Gruppen, Uniformisierung, Differentialgleichungen, Calabi-Yau Mannigfaltigkeit, Spiegelsymmetrie; Fuchsian groups, Uniformization, Calabi-Yau manifold, differential equation, mirror symmetry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hofmann, J. (2013). Monodromy calculations for some differential equations. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2013/3582/

Chicago Manual of Style (16th Edition):

Hofmann, Jörg. “Monodromy calculations for some differential equations.” 2013. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 07, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2013/3582/.

MLA Handbook (7th Edition):

Hofmann, Jörg. “Monodromy calculations for some differential equations.” 2013. Web. 07 Mar 2021.

Vancouver:

Hofmann J. Monodromy calculations for some differential equations. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2013. [cited 2021 Mar 07]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3582/.

Council of Science Editors:

Hofmann J. Monodromy calculations for some differential equations. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2013. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3582/


UCLA

14. Yin, Changyong. Geometry of Calabi-Yau moduli.

Degree: Mathematics, 2015, UCLA

 In this thesis, we study the geometry of the moduli space and the Teichmuller space of Calabi-Yau manifolds, which mainly involves the following two aspects:… (more)

Subjects/Keywords: Mathematics; Physics; Calabi-Yau manifolds; Calabi-Yau moduli; Chern form; Hodge metric; quantum correction; Weil-Petersson metric

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yin, C. (2015). Geometry of Calabi-Yau moduli. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/14c7j2m4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yin, Changyong. “Geometry of Calabi-Yau moduli.” 2015. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/14c7j2m4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yin, Changyong. “Geometry of Calabi-Yau moduli.” 2015. Web. 07 Mar 2021.

Vancouver:

Yin C. Geometry of Calabi-Yau moduli. [Internet] [Thesis]. UCLA; 2015. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/14c7j2m4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yin C. Geometry of Calabi-Yau moduli. [Thesis]. UCLA; 2015. Available from: http://www.escholarship.org/uc/item/14c7j2m4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Bazhov, Ivan. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

Nous présentons trois résultats dans cette thèse. Dans le chapitre 2 nous montrons l’existence d’un zéro-cycle cx sur une hypersurface X de type Calabi–Yau dans… (more)

Subjects/Keywords: Cycles algébriques; Anneaux de Chow; Zéro-Cycle; Variétés de type Calabi-Yau; Variétés hyper-Kählériennes; Chow groups; Constant cycles subvarieties; Zero-cycles; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bazhov, I. (2017). Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066387

Chicago Manual of Style (16th Edition):

Bazhov, Ivan. “Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed March 07, 2021. http://www.theses.fr/2017PA066387.

MLA Handbook (7th Edition):

Bazhov, Ivan. “Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.” 2017. Web. 07 Mar 2021.

Vancouver:

Bazhov I. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2017PA066387.

Council of Science Editors:

Bazhov I. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066387


Johannes Gutenberg Universität Mainz

16. Samol, Kira Verena. Frobenius polynomials for Calabi-Yau equations.

Degree: 2010, Johannes Gutenberg Universität Mainz

Sei π:X →  S eine \"uber \Z definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul M\subset H3DR(X/S)… (more)

Subjects/Keywords: Zeta function, Calabi-Yau Differential equation, Frobenius Polynomial; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samol, K. V. (2010). Frobenius polynomials for Calabi-Yau equations. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/

Chicago Manual of Style (16th Edition):

Samol, Kira Verena. “Frobenius polynomials for Calabi-Yau equations.” 2010. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 07, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/.

MLA Handbook (7th Edition):

Samol, Kira Verena. “Frobenius polynomials for Calabi-Yau equations.” 2010. Web. 07 Mar 2021.

Vancouver:

Samol KV. Frobenius polynomials for Calabi-Yau equations. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2010. [cited 2021 Mar 07]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/.

Council of Science Editors:

Samol KV. Frobenius polynomials for Calabi-Yau equations. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2010. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/


University of Alberta

17. Harder, Andrew. The Geometry of Landau-Ginzburg Models.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2016, University of Alberta

 In this thesis we address several questions around mirror symmetry for Fano manifolds and Calabi-Yau varieties. Fano mirror symmetry is a relationship between a Fano… (more)

Subjects/Keywords: Toric geometry; Fano varieties; Landau-Ginzburg models; Calabi-Yau varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harder, A. (2016). The Geometry of Landau-Ginzburg Models. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c0z708w408

Chicago Manual of Style (16th Edition):

Harder, Andrew. “The Geometry of Landau-Ginzburg Models.” 2016. Doctoral Dissertation, University of Alberta. Accessed March 07, 2021. https://era.library.ualberta.ca/files/c0z708w408.

MLA Handbook (7th Edition):

Harder, Andrew. “The Geometry of Landau-Ginzburg Models.” 2016. Web. 07 Mar 2021.

Vancouver:

Harder A. The Geometry of Landau-Ginzburg Models. [Internet] [Doctoral dissertation]. University of Alberta; 2016. [cited 2021 Mar 07]. Available from: https://era.library.ualberta.ca/files/c0z708w408.

Council of Science Editors:

Harder A. The Geometry of Landau-Ginzburg Models. [Doctoral Dissertation]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/c0z708w408


Queens University

18. Molnar, Alexander. Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds .

Degree: Mathematics and Statistics, 2015, Queens University

 This thesis is centered around particular Calabi-Yau threefolds. Borcea and Voisin construct Calabi-Yau threefolds using elliptic curves and K3 surfaces with non-symplectic involutions. This family… (more)

Subjects/Keywords: Number theory ; Modularity ; Calabi-Yau varieties ; Intermediate Jacobian ; Arithmetic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Molnar, A. (2015). Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/13588

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Molnar, Alexander. “Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds .” 2015. Thesis, Queens University. Accessed March 07, 2021. http://hdl.handle.net/1974/13588.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Molnar, Alexander. “Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds .” 2015. Web. 07 Mar 2021.

Vancouver:

Molnar A. Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds . [Internet] [Thesis]. Queens University; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1974/13588.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Molnar A. Arithmetic and Intermediate Jacobians of Calabi-Yau threefolds . [Thesis]. Queens University; 2015. Available from: http://hdl.handle.net/1974/13588

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Doroud, Nima. Gauge Theory Dynamics and Calabi-Yau Moduli.

Degree: 2014, University of Waterloo

 We compute the exact partition function of two dimensional N=(2,2) supersymmetric gauge theories on S². For theories with SU(2|1)_A invariance, the partition function admits two… (more)

Subjects/Keywords: Moduli; Calabi-Yau; String theory; Sigma model; Supersymmetry; Kähler; Localization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Doroud, N. (2014). Gauge Theory Dynamics and Calabi-Yau Moduli. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8557

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Doroud, Nima. “Gauge Theory Dynamics and Calabi-Yau Moduli.” 2014. Thesis, University of Waterloo. Accessed March 07, 2021. http://hdl.handle.net/10012/8557.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Doroud, Nima. “Gauge Theory Dynamics and Calabi-Yau Moduli.” 2014. Web. 07 Mar 2021.

Vancouver:

Doroud N. Gauge Theory Dynamics and Calabi-Yau Moduli. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10012/8557.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Doroud N. Gauge Theory Dynamics and Calabi-Yau Moduli. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8557

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. A. Cattaneo. ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES.

Degree: 2013, Università degli Studi di Milano

 The aim of the thesis is the study and the classification of the families of elliptic threefolds which are embedded as anticanonical divisors in some… (more)

Subjects/Keywords: Calabi-Yau; elliptic fibration; elliptic threefold; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2013). ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/217720

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES.” 2013. Thesis, Università degli Studi di Milano. Accessed March 07, 2021. http://hdl.handle.net/2434/217720.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES.” 2013. Web. 07 Mar 2021.

Vancouver:

Cattaneo A. ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES. [Internet] [Thesis]. Università degli Studi di Milano; 2013. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2434/217720.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. ON CALABI-YAU ELLIPTIC THREEFOLDS IN P^2-BUNDLES. [Thesis]. Università degli Studi di Milano; 2013. Available from: http://hdl.handle.net/2434/217720

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Northeastern University

21. Altman, Ross. Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties.

Degree: PhD, Department of Physics, 2017, Northeastern University

 The largest known database of Calabi-Yau threefold string vacua was famously produced by Kreuzer and Skarke in the form of a complete construction of all… (more)

Subjects/Keywords: Calabi-Yau; orientifold; reflexive polytope; string vacuum; Swiss cheese; toric variety

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Altman, R. (2017). Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20248609

Chicago Manual of Style (16th Edition):

Altman, Ross. “Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties.” 2017. Doctoral Dissertation, Northeastern University. Accessed March 07, 2021. http://hdl.handle.net/2047/D20248609.

MLA Handbook (7th Edition):

Altman, Ross. “Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties.” 2017. Web. 07 Mar 2021.

Vancouver:

Altman R. Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties. [Internet] [Doctoral dissertation]. Northeastern University; 2017. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2047/D20248609.

Council of Science Editors:

Altman R. Systematic phenomenology on the landscape of Calabi-Yau hypersurfaces in toric varieties. [Doctoral Dissertation]. Northeastern University; 2017. Available from: http://hdl.handle.net/2047/D20248609

22. Lund, Christian Overgaard. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.

Degree: PhD, 2019, University of Cambridge

 In this thesis we study Ricci-flat deformations of Ricci-flat Kähler metrics on compact orbifolds and asymptotically locally Euclidean(ALE) manifolds. In both cases we also study… (more)

Subjects/Keywords: moduli space; Ricci-flat deformations; Calabi-Yau; orbifolds; asymptotically locally Euclidean

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lund, C. O. (2019). Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.39121 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749

Chicago Manual of Style (16th Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://doi.org/10.17863/CAM.39121 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749.

MLA Handbook (7th Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Web. 07 Mar 2021.

Vancouver:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 07]. Available from: https://doi.org/10.17863/CAM.39121 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749.

Council of Science Editors:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://doi.org/10.17863/CAM.39121 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749


University of Cambridge

23. Lund, Christian Overgaard. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.

Degree: PhD, 2019, University of Cambridge

 In this thesis we study Ricci-flat deformations of Ricci-flat Kähler metrics on compact orbifolds and asymptotically locally Euclidean(ALE) manifolds. In both cases we also study… (more)

Subjects/Keywords: moduli space; Ricci-flat deformations; Calabi-Yau; orbifolds; asymptotically locally Euclidean

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lund, C. O. (2019). Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/291967

Chicago Manual of Style (16th Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://www.repository.cam.ac.uk/handle/1810/291967.

MLA Handbook (7th Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Web. 07 Mar 2021.

Vancouver:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 07]. Available from: https://www.repository.cam.ac.uk/handle/1810/291967.

Council of Science Editors:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/291967


Virginia Tech

24. Cui, Wei. Applications of Numerical Methods in Heterotic Calabi-Yau Compactification.

Degree: PhD, Physics, 2020, Virginia Tech

 String theory is one of the most promising attempts to unify gravity with the other three fundamental interactions (electromagnetic, weak and strong) of nature. It… (more)

Subjects/Keywords: Heterotic string compactification; Calabi-Yau manifold; Numerical method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, W. (2020). Applications of Numerical Methods in Heterotic Calabi-Yau Compactification. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/99859

Chicago Manual of Style (16th Edition):

Cui, Wei. “Applications of Numerical Methods in Heterotic Calabi-Yau Compactification.” 2020. Doctoral Dissertation, Virginia Tech. Accessed March 07, 2021. http://hdl.handle.net/10919/99859.

MLA Handbook (7th Edition):

Cui, Wei. “Applications of Numerical Methods in Heterotic Calabi-Yau Compactification.” 2020. Web. 07 Mar 2021.

Vancouver:

Cui W. Applications of Numerical Methods in Heterotic Calabi-Yau Compactification. [Internet] [Doctoral dissertation]. Virginia Tech; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10919/99859.

Council of Science Editors:

Cui W. Applications of Numerical Methods in Heterotic Calabi-Yau Compactification. [Doctoral Dissertation]. Virginia Tech; 2020. Available from: http://hdl.handle.net/10919/99859


University of Minnesota

25. Mak, Cheuk Yu. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.

Degree: PhD, Mathematics, 2016, University of Minnesota

 We present three different aspects of symplectic geometry in connection to complex geometry. Convex symplectic manifolds, symplectic divisors and Lagrangians are central objects to study… (more)

Subjects/Keywords: Dehn twists; Log Calabi-Yau surfaces; Symplectic fillings; Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mak, C. Y. (2016). Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182326

Chicago Manual of Style (16th Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://hdl.handle.net/11299/182326.

MLA Handbook (7th Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Web. 07 Mar 2021.

Vancouver:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11299/182326.

Council of Science Editors:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182326


Northeastern University

26. Tian, Jiahua. F-theory On Singular Spaces And Semi-realistic Model Building.

Degree: 2020, Northeastern University

 F-theory provides a vast landscape of vacua of string compactification and a geometry-physics dictionary that enables model building in various dimensions. In any semi-realistic model… (more)

Subjects/Keywords: Calabi-Yau; Compactification; F-theory; Geometry and topology; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tian, J. (2020). F-theory On Singular Spaces And Semi-realistic Model Building. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20356184

Chicago Manual of Style (16th Edition):

Tian, Jiahua. “F-theory On Singular Spaces And Semi-realistic Model Building.” 2020. Doctoral Dissertation, Northeastern University. Accessed March 07, 2021. http://hdl.handle.net/2047/D20356184.

MLA Handbook (7th Edition):

Tian, Jiahua. “F-theory On Singular Spaces And Semi-realistic Model Building.” 2020. Web. 07 Mar 2021.

Vancouver:

Tian J. F-theory On Singular Spaces And Semi-realistic Model Building. [Internet] [Doctoral dissertation]. Northeastern University; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2047/D20356184.

Council of Science Editors:

Tian J. F-theory On Singular Spaces And Semi-realistic Model Building. [Doctoral Dissertation]. Northeastern University; 2020. Available from: http://hdl.handle.net/2047/D20356184


University of New South Wales

27. Bowne-Anderson , Hugo. The explicit construction of orders on surfaces.

Degree: Mathematics & Statistics, 2011, University of New South Wales

 The study of orders over surfaces is an integral aspect of noncommutative algebraicgeometry. Although there is a substantial amount known about orders,relatively few concrete examples… (more)

Subjects/Keywords: Numerically Calabi-Yau; Orders; Projective surfaces; Noncommutative; Algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bowne-Anderson , H. (2011). The explicit construction of orders on surfaces. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Bowne-Anderson , Hugo. “The explicit construction of orders on surfaces.” 2011. Doctoral Dissertation, University of New South Wales. Accessed March 07, 2021. http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true.

MLA Handbook (7th Edition):

Bowne-Anderson , Hugo. “The explicit construction of orders on surfaces.” 2011. Web. 07 Mar 2021.

Vancouver:

Bowne-Anderson H. The explicit construction of orders on surfaces. [Internet] [Doctoral dissertation]. University of New South Wales; 2011. [cited 2021 Mar 07]. Available from: http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true.

Council of Science Editors:

Bowne-Anderson H. The explicit construction of orders on surfaces. [Doctoral Dissertation]. University of New South Wales; 2011. Available from: http://handle.unsw.edu.au/1959.4/50907 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:9801/SOURCE02?view=true


University of Edinburgh

28. Beentjes, Sjoerd Viktor. Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing.

Degree: PhD, 2018, University of Edinburgh

 Let Y be a smooth complex projective Calabi{Yau threefold. Donaldson-Thomas invariants [Tho00] are integer invariants that virtually enumerate curves on Y. They are organised in… (more)

Subjects/Keywords: 516.3; crepant resolution conjecture; enumerative geometry; Calabi-Yau threefold

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beentjes, S. V. (2018). Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/33275

Chicago Manual of Style (16th Edition):

Beentjes, Sjoerd Viktor. “Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing.” 2018. Doctoral Dissertation, University of Edinburgh. Accessed March 07, 2021. http://hdl.handle.net/1842/33275.

MLA Handbook (7th Edition):

Beentjes, Sjoerd Viktor. “Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing.” 2018. Web. 07 Mar 2021.

Vancouver:

Beentjes SV. Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing. [Internet] [Doctoral dissertation]. University of Edinburgh; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1842/33275.

Council of Science Editors:

Beentjes SV. Crepant resolution conjecture for Donaldson-Thomas invariants via wall-crossing. [Doctoral Dissertation]. University of Edinburgh; 2018. Available from: http://hdl.handle.net/1842/33275


University of Oxford

29. Gross, Jacob. Moduli spaces of complexes of coherent sheaves.

Degree: PhD, 2020, University of Oxford

 In this thesis we consider problems related to Joyce’s vertex algebra construction and the topology of stabilized moduli spaces. We first compute the homology of… (more)

Subjects/Keywords: Algebraic Topology; Algebraic Geometry; Calabi-Yau Manifolds; Moduli Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gross, J. (2020). Moduli spaces of complexes of coherent sheaves. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698

Chicago Manual of Style (16th Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Doctoral Dissertation, University of Oxford. Accessed March 07, 2021. http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

MLA Handbook (7th Edition):

Gross, Jacob. “Moduli spaces of complexes of coherent sheaves.” 2020. Web. 07 Mar 2021.

Vancouver:

Gross J. Moduli spaces of complexes of coherent sheaves. [Internet] [Doctoral dissertation]. University of Oxford; 2020. [cited 2021 Mar 07]. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698.

Council of Science Editors:

Gross J. Moduli spaces of complexes of coherent sheaves. [Doctoral Dissertation]. University of Oxford; 2020. Available from: http://ora.ox.ac.uk/objects/uuid:857c53a5-345b-4ab9-9420-f94c8030b4b3 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820698


Rutgers University

30. Garcia-Raboso, Alberto. D-branes and orientifolds in calabi-yau compactifications.

Degree: PhD, Physics and Astronomy, 2008, Rutgers University

We explore the dynamics of nonsupersymmetric D-brane configurations on Calabi-Yau orientifolds with fluxes. We show that supergravity D-terms capture supersymmetry breaking effects predicted by more… (more)

Subjects/Keywords: D-branes; Calabi-Yau manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia-Raboso, A. (2008). D-branes and orientifolds in calabi-yau compactifications. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17313

Chicago Manual of Style (16th Edition):

Garcia-Raboso, Alberto. “D-branes and orientifolds in calabi-yau compactifications.” 2008. Doctoral Dissertation, Rutgers University. Accessed March 07, 2021. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17313.

MLA Handbook (7th Edition):

Garcia-Raboso, Alberto. “D-branes and orientifolds in calabi-yau compactifications.” 2008. Web. 07 Mar 2021.

Vancouver:

Garcia-Raboso A. D-branes and orientifolds in calabi-yau compactifications. [Internet] [Doctoral dissertation]. Rutgers University; 2008. [cited 2021 Mar 07]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17313.

Council of Science Editors:

Garcia-Raboso A. D-branes and orientifolds in calabi-yau compactifications. [Doctoral Dissertation]. Rutgers University; 2008. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17313

[1] [2] [3] [4] [5] … [12664]

.