Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Stiefel manifolds). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Σταθά, Μαρίνα. Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel.

Degree: 2013, University of Patras

Σκοπός της εργασίας μας είναι η μελέτη κάποιων αναγωγικών χώρων που παρουσιάζουν ενδιαφέρουσα γεωμετρία. Συγκεκριμένα, μελετάμε τη γεωμετρία της σφαίρας Sn όταν αυτή είναι αμφιδιαφορική… (more)

Subjects/Keywords: Ομάδες Lie; Ομογενείς χώροι; Αναλλοίωτες μετρικές; Μετρικές Einstein; Πολλαπλότητες Stiefel; 516.35; Lie groups; Homogeneous spaces; Invariant metrics; Einstein metrics; Stiefel manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Σταθά, . (2013). Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel. (Masters Thesis). University of Patras. Retrieved from http://hdl.handle.net/10889/7985

Chicago Manual of Style (16th Edition):

Σταθά, Μαρίνα. “Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel.” 2013. Masters Thesis, University of Patras. Accessed February 26, 2021. http://hdl.handle.net/10889/7985.

MLA Handbook (7th Edition):

Σταθά, Μαρίνα. “Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel.” 2013. Web. 26 Feb 2021.

Vancouver:

Σταθά . Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel. [Internet] [Masters thesis]. University of Patras; 2013. [cited 2021 Feb 26]. Available from: http://hdl.handle.net/10889/7985.

Council of Science Editors:

Σταθά . Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel. [Masters Thesis]. University of Patras; 2013. Available from: http://hdl.handle.net/10889/7985

2. Barbosa, Alex Melges [UNESP]. Classes de Stiefel-Whitney e de Euler.

Degree: 2017, Universidade Estadual Paulista

Neste trabalho, apresentaremos uma descrição axiomática das classes de Stiefel-Whitney e, assumindo válidos estes axiomas, mostraremos algumas de suas aplicações. Posteriormente, definiremos as classes de… (more)

Subjects/Keywords: Variedades C∞; Fibrados Vetoriais; Classes de Stiefel-Whitney; Fibrados Orientados; Classe de Euler; C∞ Manifolds; Vector Bundles; Stiefel-Whitney Classes; Oriented Bundles; Euler Class

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barbosa, A. M. [. (2017). Classes de Stiefel-Whitney e de Euler. (Thesis). Universidade Estadual Paulista. Retrieved from http://hdl.handle.net/11449/148923

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Barbosa, Alex Melges [UNESP]. “Classes de Stiefel-Whitney e de Euler.” 2017. Thesis, Universidade Estadual Paulista. Accessed February 26, 2021. http://hdl.handle.net/11449/148923.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Barbosa, Alex Melges [UNESP]. “Classes de Stiefel-Whitney e de Euler.” 2017. Web. 26 Feb 2021.

Vancouver:

Barbosa AM[. Classes de Stiefel-Whitney e de Euler. [Internet] [Thesis]. Universidade Estadual Paulista; 2017. [cited 2021 Feb 26]. Available from: http://hdl.handle.net/11449/148923.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barbosa AM[. Classes de Stiefel-Whitney e de Euler. [Thesis]. Universidade Estadual Paulista; 2017. Available from: http://hdl.handle.net/11449/148923

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manchester

3. Borsdorf, Ruediger. Structured Matrix Nearness Problems:Theory and Algorithms.

Degree: 2012, University of Manchester

 In many areas of science one often has a given matrix, representing forexample a measured data set and is required to find a matrix that… (more)

Subjects/Keywords: correlation matrix; factor structure; matrix embedding; Stiefel manifold; linearly structured matrix; Grassmannian manifold; low rank; optimization over manifolds; matrix nearness problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borsdorf, R. (2012). Structured Matrix Nearness Problems:Theory and Algorithms. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:162521

Chicago Manual of Style (16th Edition):

Borsdorf, Ruediger. “Structured Matrix Nearness Problems:Theory and Algorithms.” 2012. Doctoral Dissertation, University of Manchester. Accessed February 26, 2021. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:162521.

MLA Handbook (7th Edition):

Borsdorf, Ruediger. “Structured Matrix Nearness Problems:Theory and Algorithms.” 2012. Web. 26 Feb 2021.

Vancouver:

Borsdorf R. Structured Matrix Nearness Problems:Theory and Algorithms. [Internet] [Doctoral dissertation]. University of Manchester; 2012. [cited 2021 Feb 26]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:162521.

Council of Science Editors:

Borsdorf R. Structured Matrix Nearness Problems:Theory and Algorithms. [Doctoral Dissertation]. University of Manchester; 2012. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:162521


University of North Texas

4. Green, Michael Douglas, 1965-. Manifolds, Vector Bundles, and Stiefel-Whitney Classes.

Degree: 1990, University of North Texas

 The problem of embedding a manifold in Euclidean space is considered. Manifolds are introduced in Chapter I along with other basic definitions and examples. Chapter… (more)

Subjects/Keywords: manifolds; vector bundles; Stiefel-Whitney classes; Euclidean space; Manifolds (Mathematics); Vector bundles.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Green, Michael Douglas, 1. (1990). Manifolds, Vector Bundles, and Stiefel-Whitney Classes. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc504181/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Green, Michael Douglas, 1965-. “Manifolds, Vector Bundles, and Stiefel-Whitney Classes.” 1990. Thesis, University of North Texas. Accessed February 26, 2021. https://digital.library.unt.edu/ark:/67531/metadc504181/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Green, Michael Douglas, 1965-. “Manifolds, Vector Bundles, and Stiefel-Whitney Classes.” 1990. Web. 26 Feb 2021.

Vancouver:

Green, Michael Douglas 1. Manifolds, Vector Bundles, and Stiefel-Whitney Classes. [Internet] [Thesis]. University of North Texas; 1990. [cited 2021 Feb 26]. Available from: https://digital.library.unt.edu/ark:/67531/metadc504181/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Green, Michael Douglas 1. Manifolds, Vector Bundles, and Stiefel-Whitney Classes. [Thesis]. University of North Texas; 1990. Available from: https://digital.library.unt.edu/ark:/67531/metadc504181/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado State University

5. Lui, Yui Man. Geometric methods on special manifolds for visual recognition.

Degree: PhD, Computer Science, 2010, Colorado State University

 Many computer vision methods assume that the underlying geometry of images is Euclidean. This assumption is generally not valid. Therefore, this dissertation introduces new nonlinear… (more)

Subjects/Keywords: action classification; visual recognition; special manifolds; geometric methods; face recognition; Human face recognition (Computer science); Grassmann manifolds; Stiefel manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lui, Y. M. (2010). Geometric methods on special manifolds for visual recognition. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/39042

Chicago Manual of Style (16th Edition):

Lui, Yui Man. “Geometric methods on special manifolds for visual recognition.” 2010. Doctoral Dissertation, Colorado State University. Accessed February 26, 2021. http://hdl.handle.net/10217/39042.

MLA Handbook (7th Edition):

Lui, Yui Man. “Geometric methods on special manifolds for visual recognition.” 2010. Web. 26 Feb 2021.

Vancouver:

Lui YM. Geometric methods on special manifolds for visual recognition. [Internet] [Doctoral dissertation]. Colorado State University; 2010. [cited 2021 Feb 26]. Available from: http://hdl.handle.net/10217/39042.

Council of Science Editors:

Lui YM. Geometric methods on special manifolds for visual recognition. [Doctoral Dissertation]. Colorado State University; 2010. Available from: http://hdl.handle.net/10217/39042


Univerzitet u Beogradu

6. Radovanović, Marko S. Гребнерове базе за многострукости застава и примене.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Математика - Алгебра / Mathematics - Algebra

о Бореловом опису, целобројна и мод 2 кохомологија многостру- кости застава дата је као полиномијална алгебра посечена по… (more)

Subjects/Keywords: Grobner bases; cohomology of ag manifolds; quantum cohomology; symmetric functions; Kostka numbers; cup-length; Schubert calculus; Chern classes; Stiefel-Whitney classes; immersions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Radovanović, M. S. (2016). Гребнерове базе за многострукости застава и примене. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11333/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Radovanović, Marko S. “Гребнерове базе за многострукости застава и примене.” 2016. Thesis, Univerzitet u Beogradu. Accessed February 26, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:11333/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Radovanović, Marko S. “Гребнерове базе за многострукости застава и примене.” 2016. Web. 26 Feb 2021.

Vancouver:

Radovanović MS. Гребнерове базе за многострукости застава и примене. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2021 Feb 26]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11333/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Radovanović MS. Гребнерове базе за многострукости застава и примене. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11333/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manchester

7. Borsdorf, Ruediger. Structured matrix nearness problems : theory and algorithms.

Degree: PhD, 2012, University of Manchester

 In many areas of science one often has a given matrix, representing for example a measured data set and is required to find a matrix… (more)

Subjects/Keywords: 025.04; correlation matrix; factor structure; matrix embedding; Stiefel manifold; linearly structured matrix; Grassmannian manifold; low rank; optimization over manifolds; matrix nearness problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borsdorf, R. (2012). Structured matrix nearness problems : theory and algorithms. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/structured-matrix-nearness-problemstheory-and-algorithms(554f944d-9a78-4b54-90c2-1ef06866c402).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554165

Chicago Manual of Style (16th Edition):

Borsdorf, Ruediger. “Structured matrix nearness problems : theory and algorithms.” 2012. Doctoral Dissertation, University of Manchester. Accessed February 26, 2021. https://www.research.manchester.ac.uk/portal/en/theses/structured-matrix-nearness-problemstheory-and-algorithms(554f944d-9a78-4b54-90c2-1ef06866c402).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554165.

MLA Handbook (7th Edition):

Borsdorf, Ruediger. “Structured matrix nearness problems : theory and algorithms.” 2012. Web. 26 Feb 2021.

Vancouver:

Borsdorf R. Structured matrix nearness problems : theory and algorithms. [Internet] [Doctoral dissertation]. University of Manchester; 2012. [cited 2021 Feb 26]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/structured-matrix-nearness-problemstheory-and-algorithms(554f944d-9a78-4b54-90c2-1ef06866c402).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554165.

Council of Science Editors:

Borsdorf R. Structured matrix nearness problems : theory and algorithms. [Doctoral Dissertation]. University of Manchester; 2012. Available from: https://www.research.manchester.ac.uk/portal/en/theses/structured-matrix-nearness-problemstheory-and-algorithms(554f944d-9a78-4b54-90c2-1ef06866c402).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554165

.