Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Stable pairs)`

.
Showing records 1 – 7 of
7 total matches.

▼ Search Limiters

University of Georgia

1. Schaffler, Luca. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.

Degree: PhD, Mathematics, 2017, University of Georgia

URL: http://hdl.handle.net/10724/37503

► We describe the moduli compactification by *stable* *pairs* (also known as KSBA compactification) of a 4-dimensional family of Enriques surfaces, which arise as specific bidouble…
(more)

Subjects/Keywords: Moduli spaces; compactifications; stable pairs; Enriques surfaces; stable toric pairs; secondary polytopes; lattices; discrete reflection groups.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schaffler, L. (2017). The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. (Doctoral Dissertation). University of Georgia. Retrieved from http://hdl.handle.net/10724/37503

Chicago Manual of Style (16^{th} Edition):

Schaffler, Luca. “The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.” 2017. Doctoral Dissertation, University of Georgia. Accessed July 03, 2020. http://hdl.handle.net/10724/37503.

MLA Handbook (7^{th} Edition):

Schaffler, Luca. “The KSBA compactification of a 4-dimensional family of polarized enriques surfaces.” 2017. Web. 03 Jul 2020.

Vancouver:

Schaffler L. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. [Internet] [Doctoral dissertation]. University of Georgia; 2017. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10724/37503.

Council of Science Editors:

Schaffler L. The KSBA compactification of a 4-dimensional family of polarized enriques surfaces. [Doctoral Dissertation]. University of Georgia; 2017. Available from: http://hdl.handle.net/10724/37503

California State University – Northridge

2.
Waheed, Areeba.
Investigation of algorithms for variants of the *Stable* Matching Problem.

Degree: MS, Department of Computer Science, 2020, California State University – Northridge

URL: http://hdl.handle.net/10211.3/216431

► The purpose of this study is to explore and provide alternative algorithms for three variants of the *stable* matching problem. The *Stable* Matching Problem is…
(more)

Subjects/Keywords: Stable Matching with Forbidden Pairs; Dissertations, Academic – CSUN – Computer Science.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Waheed, A. (2020). Investigation of algorithms for variants of the Stable Matching Problem. (Masters Thesis). California State University – Northridge. Retrieved from http://hdl.handle.net/10211.3/216431

Chicago Manual of Style (16^{th} Edition):

Waheed, Areeba. “Investigation of algorithms for variants of the Stable Matching Problem.” 2020. Masters Thesis, California State University – Northridge. Accessed July 03, 2020. http://hdl.handle.net/10211.3/216431.

MLA Handbook (7^{th} Edition):

Waheed, Areeba. “Investigation of algorithms for variants of the Stable Matching Problem.” 2020. Web. 03 Jul 2020.

Vancouver:

Waheed A. Investigation of algorithms for variants of the Stable Matching Problem. [Internet] [Masters thesis]. California State University – Northridge; 2020. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10211.3/216431.

Council of Science Editors:

Waheed A. Investigation of algorithms for variants of the Stable Matching Problem. [Masters Thesis]. California State University – Northridge; 2020. Available from: http://hdl.handle.net/10211.3/216431

3.
LI HAIQUAN.
Efficient discovery of binding motif *pairs* from protein-protein interactions.

Degree: 2007, National University of Singapore

URL: http://scholarbank.nus.edu.sg/handle/10635/15698

Subjects/Keywords: Protein interaction sites; binding motif pairs; fixed point model; stable motif pairs; significant motif pairs; interacting protein group pairs.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

HAIQUAN, L. (2007). Efficient discovery of binding motif pairs from protein-protein interactions. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/15698

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

HAIQUAN, LI. “Efficient discovery of binding motif pairs from protein-protein interactions.” 2007. Thesis, National University of Singapore. Accessed July 03, 2020. http://scholarbank.nus.edu.sg/handle/10635/15698.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

HAIQUAN, LI. “Efficient discovery of binding motif pairs from protein-protein interactions.” 2007. Web. 03 Jul 2020.

Vancouver:

HAIQUAN L. Efficient discovery of binding motif pairs from protein-protein interactions. [Internet] [Thesis]. National University of Singapore; 2007. [cited 2020 Jul 03]. Available from: http://scholarbank.nus.edu.sg/handle/10635/15698.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

HAIQUAN L. Efficient discovery of binding motif pairs from protein-protein interactions. [Thesis]. National University of Singapore; 2007. Available from: http://scholarbank.nus.edu.sg/handle/10635/15698

Not specified: Masters Thesis or Doctoral Dissertation

4. Zhu, Yuecheng. Compactification of moduli spaces and mirror symmetry.

Degree: PhD, Mathematics, 2015, University of Texas – Austin

URL: http://hdl.handle.net/2152/31508

► Olsson gives modular compactifications of the moduli of toric *pairs* and the moduli of polarized abelian varieties A [subscript g,δ] in (Ols08). We give alternative…
(more)

Subjects/Keywords: Compactificaiton; Moduli space; Abelian varieties; Toric pairs; KSBA stable pairs; Mirror symmetry; Toroidal compactification

…obtained by using KSBA *stable* *pairs*. This is a little surprising because a
*stable* pair is a… …generalization of M 1,d for higher dimensions is A P g,d , the
moduli of KSBA *stable* *pairs* with actions… …First, it suggests the
canonical limit may be produced in the moduli of *stable* *pairs*. Thanks… …X , Θ)
over the disk ∆ in the moduli of *stable* *pairs*. However, this extension (X… …x28;X ∗ , Θ∗ ) in the
proper moduli space of KSBA *stable* *pairs*. This produces a central…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhu, Y. (2015). Compactification of moduli spaces and mirror symmetry. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/31508

Chicago Manual of Style (16^{th} Edition):

Zhu, Yuecheng. “Compactification of moduli spaces and mirror symmetry.” 2015. Doctoral Dissertation, University of Texas – Austin. Accessed July 03, 2020. http://hdl.handle.net/2152/31508.

MLA Handbook (7^{th} Edition):

Zhu, Yuecheng. “Compactification of moduli spaces and mirror symmetry.” 2015. Web. 03 Jul 2020.

Vancouver:

Zhu Y. Compactification of moduli spaces and mirror symmetry. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2015. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/2152/31508.

Council of Science Editors:

Zhu Y. Compactification of moduli spaces and mirror symmetry. [Doctoral Dissertation]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/31508

5.
Sheshmani, Artan.
Towards studying of the higher rank theory of *stable* * pairs*.

Degree: PhD, 0439, 2011, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/26229

► This thesis is composed of two parts. In the first part we introduce a higher rank analog of the Pandharipande-Thomas theory of *stable* *pairs* on…
(more)

Subjects/Keywords: Calabi-Yau threefold; Stable pairs; Deformation-obstruction theory; Derived categories; Equivariant cohomology; Virtual localization; Wallcrossing

…analogue of *stable* *pairs* in [28]. We carry out calculations over toric Calabi-Yau… …in more detail:
In [27] and [28] the authors introduce *stable* *pairs*… …space of *stable* *pairs* and the invariants are defined by integration against this class. In… …this thesis we define a higher rank analogue of *stable* *pairs*:
Let X be a nonsingular Calabi… …*stable* *pairs* (*stable* frozen triples of rank 1) over S. Let IS• be the family of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sheshmani, A. (2011). Towards studying of the higher rank theory of stable pairs. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/26229

Chicago Manual of Style (16^{th} Edition):

Sheshmani, Artan. “Towards studying of the higher rank theory of stable pairs.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 03, 2020. http://hdl.handle.net/2142/26229.

MLA Handbook (7^{th} Edition):

Sheshmani, Artan. “Towards studying of the higher rank theory of stable pairs.” 2011. Web. 03 Jul 2020.

Vancouver:

Sheshmani A. Towards studying of the higher rank theory of stable pairs. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/2142/26229.

Council of Science Editors:

Sheshmani A. Towards studying of the higher rank theory of stable pairs. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/26229

6. Di Matteo, Giovanni. Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory.

Degree: Docteur es, Mathématiques, 2013, Lyon, École normale supérieure

URL: http://www.theses.fr/2013ENSL0870

►

Soient K/Qp une extension finie et GK le groupe de Galois absolu de K. Cette thèse est consacrée à l'étude de produits tensoriels cristallins (ou… (more)

Subjects/Keywords: Représentation p-adique d'un groupe de Galois absolu d'un corps p-adique; B-paire; Théorie de Hodge p-adique; Représentation cristalline; Représentation semi-stable; Représentation de de Rham; Représentation de Hodge-Tate; Représentation trianguline; Produit tensoriel; Foncteur de Schur; P-adic Galois representations of the absolute Galois group of a p-adic field; B-pairs; P-adic Hodge theory; Crystalline representation; Semi-stable representation; De Rham representation; Hodge-Tate representation; Trianguline representation; Tensor product; Schur functor; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Di Matteo, G. (2013). Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2013ENSL0870

Chicago Manual of Style (16^{th} Edition):

Di Matteo, Giovanni. “Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory.” 2013. Doctoral Dissertation, Lyon, École normale supérieure. Accessed July 03, 2020. http://www.theses.fr/2013ENSL0870.

MLA Handbook (7^{th} Edition):

Di Matteo, Giovanni. “Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory.” 2013. Web. 03 Jul 2020.

Vancouver:

Di Matteo G. Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2013. [cited 2020 Jul 03]. Available from: http://www.theses.fr/2013ENSL0870.

Council of Science Editors:

Di Matteo G. Produits tensoriels en théorie de Hodge p-adique : Tensor products in p-adic Hodge theory. [Doctoral Dissertation]. Lyon, École normale supérieure; 2013. Available from: http://www.theses.fr/2013ENSL0870

7.
Lin, Yinbang.
Moduli spaces of *stable* * pairs*.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

URL: http://hdl.handle.net/2047/D20211687

► We construct a moduli space of *stable* *pairs* over a smooth projective variety, parametrizing morphisms from a fixed coherent sheaf to a varying sheaf of…
(more)

Subjects/Keywords: deformation; moduli space; obstruction; stable pairs; virtual class; Moduli theory; Geometry, Algebraic; Morphisms (Mathematics); Sheaf theory; Hilbert algebras

…The
moduli functor SEs 0 (P, δ) of equivalence classes of δ-*stable* *pairs* is… …obstruction theory of *stable* *pairs* is very similar to that of the Quot scheme.
For a quotient q ∶ E0… …the moduli space SEs 0 (P, δ) = SE0 (P, δ) of *stable* *pairs* admits a… …surface. Kool and
Thomas [KT14a, KT14b] studied *stable* *pairs* invariants with E0 ≅ OX… …intersection theory of
the moduli space of *stable* *pairs* on a surface in future work.
After this…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lin, Y. (2016). Moduli spaces of stable pairs. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211687

Chicago Manual of Style (16^{th} Edition):

Lin, Yinbang. “Moduli spaces of stable pairs.” 2016. Doctoral Dissertation, Northeastern University. Accessed July 03, 2020. http://hdl.handle.net/2047/D20211687.

MLA Handbook (7^{th} Edition):

Lin, Yinbang. “Moduli spaces of stable pairs.” 2016. Web. 03 Jul 2020.

Vancouver:

Lin Y. Moduli spaces of stable pairs. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/2047/D20211687.

Council of Science Editors:

Lin Y. Moduli spaces of stable pairs. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211687