Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Spectral triples). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Western Ontario

1. Dong, Rui. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.

Degree: 2019, University of Western Ontario

 In noncommutative geometry, the metric information of a noncommutative space is encoded in the data of a spectral triple (𝓐, \mathcal{H},D), where D plays the… (more)

Subjects/Keywords: Noncommutative Geometry; Spectral Triples; Second Quantization; Spectral Geometry; Differential Geometry; Modified Bessel Functions; Chemical Potential; Entropy; Ricci Curvature; Scalar Curvature; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dong, R. (2019). Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Thesis, University of Western Ontario. Accessed March 05, 2021. https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Web. 05 Mar 2021.

Vancouver:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 Mar 05]. Available from: https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Paris-Sud – Paris XI

2. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 05, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 05 Mar 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115


University of St. Andrews

3. Samuel, Anthony. A commutative noncommutative fractal geometry .

Degree: 2010, University of St. Andrews

 In this thesis examples of spectral triples, which represent fractal sets, are examined and new insights into their noncommutative geometries are obtained. Firstly, starting with… (more)

Subjects/Keywords: Fractal geometry; Multifractal analysis; Symbolic dynamics; Ergodic theory; Thermodynamic formalism; Renewal theory; Noncommutative geometry; Spectral triples

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samuel, A. (2010). A commutative noncommutative fractal geometry . (Thesis). University of St. Andrews. Retrieved from http://hdl.handle.net/10023/1710

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Samuel, Anthony. “A commutative noncommutative fractal geometry .” 2010. Thesis, University of St. Andrews. Accessed March 05, 2021. http://hdl.handle.net/10023/1710.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Samuel, Anthony. “A commutative noncommutative fractal geometry .” 2010. Web. 05 Mar 2021.

Vancouver:

Samuel A. A commutative noncommutative fractal geometry . [Internet] [Thesis]. University of St. Andrews; 2010. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10023/1710.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Samuel A. A commutative noncommutative fractal geometry . [Thesis]. University of St. Andrews; 2010. Available from: http://hdl.handle.net/10023/1710

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Gautier-Baudhuit, Franck. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.

Degree: Docteur es, Mathématiques Fondamentales, 2017, Université Clermont Auvergne‎ (2017-2020)

Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuvent être associées à certaines algèbres d'opérateurs sur des espaces de… (more)

Subjects/Keywords: Algèbres de Lie nilpotentes; Fonctions zêta spectrales; Géométrie différentielle; Géométrie non commutative; Laplacien; Opérateurs différentiels; Opérateurs de Schrödinger; Prolongement méromorphe; Représentation de Kirillov; Tore non commutatif; Triplets spectraux; Nilpotent Lie algébras; Spectral zeta function; Differential geometry; Noncommutative geometry; Laplacian; Differential geometry; Schrödinger operators; Meromorphic continuation; Kirillov representation; Noncommutative torus; Spectral triples

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gautier-Baudhuit, F. (2017). Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. (Doctoral Dissertation). Université Clermont Auvergne‎ (2017-2020). Retrieved from http://www.theses.fr/2017CLFAC042

Chicago Manual of Style (16th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Doctoral Dissertation, Université Clermont Auvergne‎ (2017-2020). Accessed March 05, 2021. http://www.theses.fr/2017CLFAC042.

MLA Handbook (7th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Web. 05 Mar 2021.

Vancouver:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Internet] [Doctoral dissertation]. Université Clermont Auvergne‎ (2017-2020); 2017. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2017CLFAC042.

Council of Science Editors:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Doctoral Dissertation]. Université Clermont Auvergne‎ (2017-2020); 2017. Available from: http://www.theses.fr/2017CLFAC042

5. Thibault de Chanvalon, Manon. Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi.

Degree: Docteur es, Mathématiques Fondamentales, 2014, Université Blaise-Pascale, Clermont-Ferrand II

Résumé indisponible

Résumé indisponible

Advisors/Committee Members: Bichon, Julien (thesis director), Lescure, Jean-Marie (thesis director).

Subjects/Keywords: Groupes quantiques de symétrie; Triplets spectraux; Modules hilbertiens; Algèbre de Hopf; Calculs différentiels bicovariants; Quantum symmetry groups; Spectral triples; Hilbert modules; Hopf algebras; Bicovariant differential calculi

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thibault de Chanvalon, M. (2014). Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi. (Doctoral Dissertation). Université Blaise-Pascale, Clermont-Ferrand II. Retrieved from http://www.theses.fr/2014CLF22521

Chicago Manual of Style (16th Edition):

Thibault de Chanvalon, Manon. “Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi.” 2014. Doctoral Dissertation, Université Blaise-Pascale, Clermont-Ferrand II. Accessed March 05, 2021. http://www.theses.fr/2014CLF22521.

MLA Handbook (7th Edition):

Thibault de Chanvalon, Manon. “Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi.” 2014. Web. 05 Mar 2021.

Vancouver:

Thibault de Chanvalon M. Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi. [Internet] [Doctoral dissertation]. Université Blaise-Pascale, Clermont-Ferrand II; 2014. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2014CLF22521.

Council of Science Editors:

Thibault de Chanvalon M. Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels : Quantum groups : actions on Hilbert modules and differential calculi. [Doctoral Dissertation]. Université Blaise-Pascale, Clermont-Ferrand II; 2014. Available from: http://www.theses.fr/2014CLF22521

.