Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Spectral Geometry). Showing records 1 – 30 of 58 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


Universiteit Utrecht

1. Kluck, F.V. A metric in the space of spectral triples.

Degree: 2014, Universiteit Utrecht

 In 1996, Alain Connes introduced the spectral triple, which encodes the information of a spin manifold in a way that allows for a noncommutative generalization.… (more)

Subjects/Keywords: spectral triple; noncommutative geometry; correspondences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kluck, F. V. (2014). A metric in the space of spectral triples. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/291827

Chicago Manual of Style (16th Edition):

Kluck, F V. “A metric in the space of spectral triples.” 2014. Masters Thesis, Universiteit Utrecht. Accessed January 17, 2021. http://dspace.library.uu.nl:8080/handle/1874/291827.

MLA Handbook (7th Edition):

Kluck, F V. “A metric in the space of spectral triples.” 2014. Web. 17 Jan 2021.

Vancouver:

Kluck FV. A metric in the space of spectral triples. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2021 Jan 17]. Available from: http://dspace.library.uu.nl:8080/handle/1874/291827.

Council of Science Editors:

Kluck FV. A metric in the space of spectral triples. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/291827


University of Waterloo

2. dos Santos Lobo Brandao, Eduardo. On Infinitesimal Inverse Spectral Geometry.

Degree: 2011, University of Waterloo

Spectral geometry is the field of mathematics which concerns relationships between geometric structures of manifolds and the spectra of canonical differential operators. Inverse Spectral Geometry(more)

Subjects/Keywords: Spectral Geometry; Sampling Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

dos Santos Lobo Brandao, E. (2011). On Infinitesimal Inverse Spectral Geometry. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6273

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

dos Santos Lobo Brandao, Eduardo. “On Infinitesimal Inverse Spectral Geometry.” 2011. Thesis, University of Waterloo. Accessed January 17, 2021. http://hdl.handle.net/10012/6273.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

dos Santos Lobo Brandao, Eduardo. “On Infinitesimal Inverse Spectral Geometry.” 2011. Web. 17 Jan 2021.

Vancouver:

dos Santos Lobo Brandao E. On Infinitesimal Inverse Spectral Geometry. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/10012/6273.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

dos Santos Lobo Brandao E. On Infinitesimal Inverse Spectral Geometry. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6273

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rutgers University

3. Krueger, August John, 1985-. Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates.

Degree: PhD, Physics and Astronomy, 2014, Rutgers University

We consider the Schrödinger equation with a Hamiltonian given by a second order o difference operator with nonconstant growing coefficients, on the half one dimensional… (more)

Subjects/Keywords: Noncommutative differential geometry; Spectral theory (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krueger, August John, 1. (2014). Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45320/

Chicago Manual of Style (16th Edition):

Krueger, August John, 1985-. “Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates.” 2014. Doctoral Dissertation, Rutgers University. Accessed January 17, 2021. https://rucore.libraries.rutgers.edu/rutgers-lib/45320/.

MLA Handbook (7th Edition):

Krueger, August John, 1985-. “Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates.” 2014. Web. 17 Jan 2021.

Vancouver:

Krueger, August John 1. Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2021 Jan 17]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45320/.

Council of Science Editors:

Krueger, August John 1. Structure and dynamics of noncommutative solitons: spectral theory and dispersive estimates. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45320/


University of Texas – Austin

4. -4112-5745. Aspects of derived Koszul duality.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

 This thesis comprises two distinct chapters. In the first, we rigidify constructions of generalized string topology Thom spectra due to Gruher – Salvatore into lax symmetric… (more)

Subjects/Keywords: Koszul duality; String topology; Spectral algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4112-5745. (2016). Aspects of derived Koszul duality. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed January 17, 2021. http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Web. 17 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4112-5745. Aspects of derived Koszul duality. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4112-5745. Aspects of derived Koszul duality. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Western Ontario

5. Dong, Rui. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.

Degree: 2019, University of Western Ontario

 In noncommutative geometry, the metric information of a noncommutative space is encoded in the data of a spectral triple (𝓐, \mathcal{H},D), where D plays the… (more)

Subjects/Keywords: Noncommutative Geometry; Spectral Triples; Second Quantization; Spectral Geometry; Differential Geometry; Modified Bessel Functions; Chemical Potential; Entropy; Ricci Curvature; Scalar Curvature; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dong, R. (2019). Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Thesis, University of Western Ontario. Accessed January 17, 2021. https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Web. 17 Jan 2021.

Vancouver:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 Jan 17]. Available from: https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

6. Oud, G.T. (author). An Application of Discrete Differential Geometry to the Spectral Element Method.

Degree: 2011, Delft University of Technology

The thesis describes how differential geometry and algebraic topology together can be applied to an existing numerical method. After some introduction, the central idea is… (more)

Subjects/Keywords: discrete differential geometry; spectral element method; differential geometry; algebraic topology; mimetic methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oud, G. T. (. (2011). An Application of Discrete Differential Geometry to the Spectral Element Method. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85

Chicago Manual of Style (16th Edition):

Oud, G T (author). “An Application of Discrete Differential Geometry to the Spectral Element Method.” 2011. Masters Thesis, Delft University of Technology. Accessed January 17, 2021. http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85.

MLA Handbook (7th Edition):

Oud, G T (author). “An Application of Discrete Differential Geometry to the Spectral Element Method.” 2011. Web. 17 Jan 2021.

Vancouver:

Oud GT(. An Application of Discrete Differential Geometry to the Spectral Element Method. [Internet] [Masters thesis]. Delft University of Technology; 2011. [cited 2021 Jan 17]. Available from: http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85.

Council of Science Editors:

Oud GT(. An Application of Discrete Differential Geometry to the Spectral Element Method. [Masters Thesis]. Delft University of Technology; 2011. Available from: http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85


University of Michigan

7. Marple, Gary. Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries.

Degree: PhD, Applied and Interdisciplinary Mathematics, 2016, University of Michigan

 This dissertation presents a new boundary integral equation (BIE) method for simulating vesicle flows through periodic geometries. We begin by describing the periodization scheme, in… (more)

Subjects/Keywords: Stokes flow; periodic geometry; spectral methods; boundary integral equations; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marple, G. (2016). Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/135778

Chicago Manual of Style (16th Edition):

Marple, Gary. “Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries.” 2016. Doctoral Dissertation, University of Michigan. Accessed January 17, 2021. http://hdl.handle.net/2027.42/135778.

MLA Handbook (7th Edition):

Marple, Gary. “Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries.” 2016. Web. 17 Jan 2021.

Vancouver:

Marple G. Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2027.42/135778.

Council of Science Editors:

Marple G. Fast, High-order Algorithms for Simulating Vesicle Flows Through Periodic Geometries. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/135778


University of Oxford

8. Schaposnik, Laura P. Spectral data for G-Higgs bundles.

Degree: PhD, 2013, University of Oxford

 We develop a new geometric method of understanding principal G-Higgs bundles through their spectral data, for G a real form of a complex Lie group.… (more)

Subjects/Keywords: 539.721; Geometry; Higgs bundles; Hitchin fibration; spectral data

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schaposnik, L. P. (2013). Spectral data for G-Higgs bundles. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7b483c4c-53e4-4449-88c2-7a75d98ac861 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581370

Chicago Manual of Style (16th Edition):

Schaposnik, Laura P. “Spectral data for G-Higgs bundles.” 2013. Doctoral Dissertation, University of Oxford. Accessed January 17, 2021. http://ora.ox.ac.uk/objects/uuid:7b483c4c-53e4-4449-88c2-7a75d98ac861 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581370.

MLA Handbook (7th Edition):

Schaposnik, Laura P. “Spectral data for G-Higgs bundles.” 2013. Web. 17 Jan 2021.

Vancouver:

Schaposnik LP. Spectral data for G-Higgs bundles. [Internet] [Doctoral dissertation]. University of Oxford; 2013. [cited 2021 Jan 17]. Available from: http://ora.ox.ac.uk/objects/uuid:7b483c4c-53e4-4449-88c2-7a75d98ac861 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581370.

Council of Science Editors:

Schaposnik LP. Spectral data for G-Higgs bundles. [Doctoral Dissertation]. University of Oxford; 2013. Available from: http://ora.ox.ac.uk/objects/uuid:7b483c4c-53e4-4449-88c2-7a75d98ac861 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581370

9. Panine, Mikhail. Explorations of Infinitesimal Inverse Spectral Geometry.

Degree: 2013, University of Waterloo

Spectral geometry is a mathematical discipline that studies the relationship between the geometry of Riemannian manifolds and the spectra of natural differential operators defined on… (more)

Subjects/Keywords: Spectral Geometry; Inverse Problems

…results from a mathematical discipline known as inverse spectral geometry (ISG). As… …famously put by Mark Kac [45], inverse spectral geometry is the quest to answer the… …literature, but to a lesser extent. Spectral geometry thus naturally contains the differential… …inverse spectral geometry. Second, even in the cases when some identification of shape from… …nature of spectral geometry, one could say that the nonlinearity of the map between shapes and… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panine, M. (2013). Explorations of Infinitesimal Inverse Spectral Geometry. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/7997

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Panine, Mikhail. “Explorations of Infinitesimal Inverse Spectral Geometry.” 2013. Thesis, University of Waterloo. Accessed January 17, 2021. http://hdl.handle.net/10012/7997.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Panine, Mikhail. “Explorations of Infinitesimal Inverse Spectral Geometry.” 2013. Web. 17 Jan 2021.

Vancouver:

Panine M. Explorations of Infinitesimal Inverse Spectral Geometry. [Internet] [Thesis]. University of Waterloo; 2013. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/10012/7997.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Panine M. Explorations of Infinitesimal Inverse Spectral Geometry. [Thesis]. University of Waterloo; 2013. Available from: http://hdl.handle.net/10012/7997

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Belliard, Raphaël. Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes.

Degree: Docteur es, Physique mathématique, 2017, Université Pierre et Marie Curie – Paris VI

Cette thèse de doctorat traite d’un cadre en géométrie complexe et de méthodes pouvant y être développées pour résoudre des ensembles d’équations différentielles compatibles venant… (more)

Subjects/Keywords: Symétries; Intégrabilité; Courbes spectrales; Récurrence topologique; Connexions dans des fibrés principaux; Quantification; Spectral curve geometry; Quantum spectral curves; Integrability; 530.15

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belliard, R. (2017). Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066175

Chicago Manual of Style (16th Edition):

Belliard, Raphaël. “Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed January 17, 2021. http://www.theses.fr/2017PA066175.

MLA Handbook (7th Edition):

Belliard, Raphaël. “Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes.” 2017. Web. 17 Jan 2021.

Vancouver:

Belliard R. Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2017PA066175.

Council of Science Editors:

Belliard R. Geometry of integrable systems : from topological Lax systems to conformal field theories : Geométrie des systèmes intégrables : des systèmes de Lax topologiques aux théories des champs conformes. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066175

11. Bizi, Nadir. Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules.

Degree: Docteur es, Physique, 2018, Sorbonne université

Dans cette thèse, nous nous intéressons à la géométrie non-commutative - aux triplets spectraux en particulier - comme moyen d'unifier gravitation et modèle standard de… (more)

Subjects/Keywords: Géométrie non-commutative; Modèle standard; Semi-Riemannien; Géométrie spin; Espace de krein; Triplet spectral; Non-commutative geometry; Standard model; Semi-Riemannian; Spin geometry; Krein space; Spectral triple

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bizi, N. (2018). Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2018SORUS413

Chicago Manual of Style (16th Edition):

Bizi, Nadir. “Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules.” 2018. Doctoral Dissertation, Sorbonne université. Accessed January 17, 2021. http://www.theses.fr/2018SORUS413.

MLA Handbook (7th Edition):

Bizi, Nadir. “Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules.” 2018. Web. 17 Jan 2021.

Vancouver:

Bizi N. Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules. [Internet] [Doctoral dissertation]. Sorbonne université; 2018. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2018SORUS413.

Council of Science Editors:

Bizi N. Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics : Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules. [Doctoral Dissertation]. Sorbonne université; 2018. Available from: http://www.theses.fr/2018SORUS413


Wayne State University

12. Hu, Jiaxi. Shape Analysis Using Spectral Geometry.

Degree: PhD, Computer Science, 2015, Wayne State University

  Shape analysis is a fundamental research topic in computer graphics and computer vision. To date, more and more 3D data is produced by those… (more)

Subjects/Keywords: eigenfunction; eigenvalue; eigenvalue variation; shape analysis; shape spectrum; spectral geometry; Computer Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, J. (2015). Shape Analysis Using Spectral Geometry. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1143

Chicago Manual of Style (16th Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Doctoral Dissertation, Wayne State University. Accessed January 17, 2021. https://digitalcommons.wayne.edu/oa_dissertations/1143.

MLA Handbook (7th Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Web. 17 Jan 2021.

Vancouver:

Hu J. Shape Analysis Using Spectral Geometry. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2021 Jan 17]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143.

Council of Science Editors:

Hu J. Shape Analysis Using Spectral Geometry. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143


Delft University of Technology

13. Talanki, Mallika (author). Analysis of Laplace eigenvalues using Spectral element methods.

Degree: 2017, Delft University of Technology

 In order to solve a partial differential equation numerically it has to be replaced with a system of equations. The methods which can preserve these… (more)

Subjects/Keywords: Spectral element method; Laplace operator; eigenvalues; differential geometry; edge basis functions; algebraic topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Talanki, M. (. (2017). Analysis of Laplace eigenvalues using Spectral element methods. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:3408c6d3-fe36-4272-bade-52cca96163a5

Chicago Manual of Style (16th Edition):

Talanki, Mallika (author). “Analysis of Laplace eigenvalues using Spectral element methods.” 2017. Masters Thesis, Delft University of Technology. Accessed January 17, 2021. http://resolver.tudelft.nl/uuid:3408c6d3-fe36-4272-bade-52cca96163a5.

MLA Handbook (7th Edition):

Talanki, Mallika (author). “Analysis of Laplace eigenvalues using Spectral element methods.” 2017. Web. 17 Jan 2021.

Vancouver:

Talanki M(. Analysis of Laplace eigenvalues using Spectral element methods. [Internet] [Masters thesis]. Delft University of Technology; 2017. [cited 2021 Jan 17]. Available from: http://resolver.tudelft.nl/uuid:3408c6d3-fe36-4272-bade-52cca96163a5.

Council of Science Editors:

Talanki M(. Analysis of Laplace eigenvalues using Spectral element methods. [Masters Thesis]. Delft University of Technology; 2017. Available from: http://resolver.tudelft.nl/uuid:3408c6d3-fe36-4272-bade-52cca96163a5


University of Waterloo

14. Kouchekzadeh Yazdi, Yasaman. Entanglement Entropy of Scalar Fields in Causal Set Theory.

Degree: 2017, University of Waterloo

 Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal… (more)

Subjects/Keywords: Causal Set Theory; Entanglement Entropy; Entropy of Coarse-Graining; Lorentzian Spectral Geometry; Zero Modes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kouchekzadeh Yazdi, Y. (2017). Entanglement Entropy of Scalar Fields in Causal Set Theory. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/12151

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kouchekzadeh Yazdi, Yasaman. “Entanglement Entropy of Scalar Fields in Causal Set Theory.” 2017. Thesis, University of Waterloo. Accessed January 17, 2021. http://hdl.handle.net/10012/12151.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kouchekzadeh Yazdi, Yasaman. “Entanglement Entropy of Scalar Fields in Causal Set Theory.” 2017. Web. 17 Jan 2021.

Vancouver:

Kouchekzadeh Yazdi Y. Entanglement Entropy of Scalar Fields in Causal Set Theory. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/10012/12151.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kouchekzadeh Yazdi Y. Entanglement Entropy of Scalar Fields in Causal Set Theory. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/12151

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Loughborough University

15. Cook, Joseph. Properties of eigenvalues on Riemann surfaces with large symmetry groups.

Degree: PhD, 2018, Loughborough University

 On compact Riemann surfaces, the Laplacian Δ has a discrete, non-negative spectrum of eigenvalues {λi} of finite multiplicity. The spectrum is intrinsically linked to the… (more)

Subjects/Keywords: 515; Riemann surface; Klein quartic; Bolza surface; Representation theory; Symmetry; Spectral theory; Analysis; Hyperbolic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cook, J. (2018). Properties of eigenvalues on Riemann surfaces with large symmetry groups. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/36294

Chicago Manual of Style (16th Edition):

Cook, Joseph. “Properties of eigenvalues on Riemann surfaces with large symmetry groups.” 2018. Doctoral Dissertation, Loughborough University. Accessed January 17, 2021. http://hdl.handle.net/2134/36294.

MLA Handbook (7th Edition):

Cook, Joseph. “Properties of eigenvalues on Riemann surfaces with large symmetry groups.” 2018. Web. 17 Jan 2021.

Vancouver:

Cook J. Properties of eigenvalues on Riemann surfaces with large symmetry groups. [Internet] [Doctoral dissertation]. Loughborough University; 2018. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2134/36294.

Council of Science Editors:

Cook J. Properties of eigenvalues on Riemann surfaces with large symmetry groups. [Doctoral Dissertation]. Loughborough University; 2018. Available from: http://hdl.handle.net/2134/36294

16. Falk, Kevin. Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas.

Degree: Docteur es, Physique et sciences de la matière, 2015, Aix Marseille Université

Cette thèse montre en quoi la quantification de Berezin – Toeplitz peut être incorporée dans le cadre de la géométrie non commutative.Tout d'abord, nous présentons les… (more)

Subjects/Keywords: Géométrie non commutative; Quantification de Berezin – Toeplitz; Triplet spectral; Domaine strictement pseudoconvexe; Opérateurs pseudodifférentiels; Noncommutative geometry; Berezin – Toeplitz quantization; Spectral triple; Strictly pseudoconvex domain; Pseudodifferential operators; 530

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Falk, K. (2015). Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2015AIXM4033

Chicago Manual of Style (16th Edition):

Falk, Kevin. “Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas.” 2015. Doctoral Dissertation, Aix Marseille Université. Accessed January 17, 2021. http://www.theses.fr/2015AIXM4033.

MLA Handbook (7th Edition):

Falk, Kevin. “Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas.” 2015. Web. 17 Jan 2021.

Vancouver:

Falk K. Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas. [Internet] [Doctoral dissertation]. Aix Marseille Université 2015. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2015AIXM4033.

Council of Science Editors:

Falk K. Berezin – Toeplitz quantization and noncommutative geometry : Hamiltonian chaos into fusion plasmas. [Doctoral Dissertation]. Aix Marseille Université 2015. Available from: http://www.theses.fr/2015AIXM4033


University of Michigan

17. Sandoval, Mary Ruth. Wave-trace asymptotics for operators of Dirac type.

Degree: PhD, Pure Sciences, 1997, University of Michigan

Spectral geometry seeks to understand the relationship between the spectra of differential operators and the underlying geometry of a manifold, especially to understand which geometric… (more)

Subjects/Keywords: Asymptotics; Dirac; Operators; Spectral Geometry; Trace; Type; Wave

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sandoval, M. R. (1997). Wave-trace asymptotics for operators of Dirac type. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/130578

Chicago Manual of Style (16th Edition):

Sandoval, Mary Ruth. “Wave-trace asymptotics for operators of Dirac type.” 1997. Doctoral Dissertation, University of Michigan. Accessed January 17, 2021. http://hdl.handle.net/2027.42/130578.

MLA Handbook (7th Edition):

Sandoval, Mary Ruth. “Wave-trace asymptotics for operators of Dirac type.” 1997. Web. 17 Jan 2021.

Vancouver:

Sandoval MR. Wave-trace asymptotics for operators of Dirac type. [Internet] [Doctoral dissertation]. University of Michigan; 1997. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2027.42/130578.

Council of Science Editors:

Sandoval MR. Wave-trace asymptotics for operators of Dirac type. [Doctoral Dissertation]. University of Michigan; 1997. Available from: http://hdl.handle.net/2027.42/130578

18. Nelsen, Lauren Morey. Applications of Geometric and Spectral Methods in Graph Theory.

Degree: PhD, Mathematics, 2019, U of Denver

  Networks, or graphs, are useful for studying many things in today’s world. Graphs can be used to represent connections on social media, transportation networks,… (more)

Subjects/Keywords: Probabilistic method; Spectral graph theory; Graphs; Graph curvature; Geometry and Topology; Mathematics; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nelsen, L. M. (2019). Applications of Geometric and Spectral Methods in Graph Theory. (Doctoral Dissertation). U of Denver. Retrieved from https://digitalcommons.du.edu/etd/1607

Chicago Manual of Style (16th Edition):

Nelsen, Lauren Morey. “Applications of Geometric and Spectral Methods in Graph Theory.” 2019. Doctoral Dissertation, U of Denver. Accessed January 17, 2021. https://digitalcommons.du.edu/etd/1607.

MLA Handbook (7th Edition):

Nelsen, Lauren Morey. “Applications of Geometric and Spectral Methods in Graph Theory.” 2019. Web. 17 Jan 2021.

Vancouver:

Nelsen LM. Applications of Geometric and Spectral Methods in Graph Theory. [Internet] [Doctoral dissertation]. U of Denver; 2019. [cited 2021 Jan 17]. Available from: https://digitalcommons.du.edu/etd/1607.

Council of Science Editors:

Nelsen LM. Applications of Geometric and Spectral Methods in Graph Theory. [Doctoral Dissertation]. U of Denver; 2019. Available from: https://digitalcommons.du.edu/etd/1607


Iowa State University

19. Rodriguez-Quinones, Leoncio. Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole.

Degree: 2018, Iowa State University

 We present some results related with the asymptotic expansion of the eigenvalues for the Schrödinger-Steklov eigenvalue problem. We find explicit expressions for this asymptotic behavior… (more)

Subjects/Keywords: asymptotic behavior of eingenvalues; inverse problem; shape derivative; shape optimization; spectral geometry; Steklov eigenvalues; Applied Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rodriguez-Quinones, L. (2018). Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/16662

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rodriguez-Quinones, Leoncio. “Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole.” 2018. Thesis, Iowa State University. Accessed January 17, 2021. https://lib.dr.iastate.edu/etd/16662.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rodriguez-Quinones, Leoncio. “Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole.” 2018. Web. 17 Jan 2021.

Vancouver:

Rodriguez-Quinones L. Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole. [Internet] [Thesis]. Iowa State University; 2018. [cited 2021 Jan 17]. Available from: https://lib.dr.iastate.edu/etd/16662.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rodriguez-Quinones L. Direct and inverse problems for a Schrödinger-Steklov eigenproblem on different domains and spectral geometry for the first normalized Steklov eigenvalue on domains with one hole. [Thesis]. Iowa State University; 2018. Available from: https://lib.dr.iastate.edu/etd/16662

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Khalile, Magda. Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners.

Degree: Docteur es, Mathématiques appliquées, 2018, Université Paris-Saclay (ComUE)

Dans cette thèse, nous étudions les propriétés spectrales du Laplacien avec la condition de bord de Robin attractive sur des domaines du plan à coins.… (more)

Subjects/Keywords: Géometrie spectrale; Analyse asymptotique; Laplacien; Condition de bord de Robin; Coins; Spectral geometry; Asymptotic analysis; Laplacian; Robin boundary condition; Corners

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khalile, M. (2018). Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLS235

Chicago Manual of Style (16th Edition):

Khalile, Magda. “Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed January 17, 2021. http://www.theses.fr/2018SACLS235.

MLA Handbook (7th Edition):

Khalile, Magda. “Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners.” 2018. Web. 17 Jan 2021.

Vancouver:

Khalile M. Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2018SACLS235.

Council of Science Editors:

Khalile M. Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan : Spectral problems with Robin boundary conditions on planar domains with corners. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLS235

21. Jung, Junehyuk. On the zeros of automorphic forms .

Degree: PhD, 2013, Princeton University

 The subject of this thesis is the zeros of automorphic forms. In the first part, we study the asymptotic behavior of nodal lines of Maass… (more)

Subjects/Keywords: Automorphic forms; Number theory; Spectral geometry

…discuss background which the following chapters built on. 1.2 Spectral theory of ∆ on… …noncompact surfaces In this section we briefly explain the spectral theory of the Laplacian on… …with the spectral theory of ∆H on L2 (Y ). 9 Theorem 1.2.3. Let L20 (Y )… …the role of the global geometry of Y . 1 n |n ∈ Z}. Let the horocycle γ be given 0 1 by… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jung, J. (2013). On the zeros of automorphic forms . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01fx719m52n

Chicago Manual of Style (16th Edition):

Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Doctoral Dissertation, Princeton University. Accessed January 17, 2021. http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.

MLA Handbook (7th Edition):

Jung, Junehyuk. “On the zeros of automorphic forms .” 2013. Web. 17 Jan 2021.

Vancouver:

Jung J. On the zeros of automorphic forms . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Jan 17]. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n.

Council of Science Editors:

Jung J. On the zeros of automorphic forms . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01fx719m52n


Université Paris-Sud – Paris XI

22. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed January 17, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 17 Jan 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115


University of Texas – Austin

23. Khalighi, Amir Hossein. The mitral valve computational anatomy and geometry analysis.

Degree: MSin Engineering, Mechanical Engineering, 2015, University of Texas – Austin

 We present a novel methodology to characterize and quantify the Mitral Valve (MV) geometry and physical attributes in a multi-resolution framework. A multi-scale decomposition was… (more)

Subjects/Keywords: Mitral valve; Computational geometry; Superquadrics; Attribute modeling; Multi-resolution analysis; Spectral analysis; Patient-specific modeling; Population-averaged model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khalighi, A. H. (2015). The mitral valve computational anatomy and geometry analysis. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/63913

Chicago Manual of Style (16th Edition):

Khalighi, Amir Hossein. “The mitral valve computational anatomy and geometry analysis.” 2015. Masters Thesis, University of Texas – Austin. Accessed January 17, 2021. http://hdl.handle.net/2152/63913.

MLA Handbook (7th Edition):

Khalighi, Amir Hossein. “The mitral valve computational anatomy and geometry analysis.” 2015. Web. 17 Jan 2021.

Vancouver:

Khalighi AH. The mitral valve computational anatomy and geometry analysis. [Internet] [Masters thesis]. University of Texas – Austin; 2015. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2152/63913.

Council of Science Editors:

Khalighi AH. The mitral valve computational anatomy and geometry analysis. [Masters Thesis]. University of Texas – Austin; 2015. Available from: http://hdl.handle.net/2152/63913

24. Panine, Mikhail. On Perturbative Methods in Spectral Geometry.

Degree: 2017, University of Waterloo

 The goal of spectral geometry is to establish how much information about the geometry of compact Riemannian manifolds is contained in the spectra of natural… (more)

Subjects/Keywords: Spectral Geometry; Perturbation Theory; Riemannian Geometry; Inverse Problems

…manifolds is known as spectral geometry. By far, the favorite subject in spectral geometry is the… …sometimes known as inverse spectral geometry. We will adopt this terminology. The program of… …inverse spectral geometry makes some very tempting promises. Indeed, suppose that one is able to… …potential applications of inverse spectral geometry is the description of the shape of space-time… …interface of differential geometry and functional analysis, spectral geometry seems like a natural… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panine, M. (2017). On Perturbative Methods in Spectral Geometry. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/12229

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Panine, Mikhail. “On Perturbative Methods in Spectral Geometry.” 2017. Thesis, University of Waterloo. Accessed January 17, 2021. http://hdl.handle.net/10012/12229.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Panine, Mikhail. “On Perturbative Methods in Spectral Geometry.” 2017. Web. 17 Jan 2021.

Vancouver:

Panine M. On Perturbative Methods in Spectral Geometry. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/10012/12229.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Panine M. On Perturbative Methods in Spectral Geometry. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/12229

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Montpellier II

25. Rieux, Frédéric. Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces.

Degree: Docteur es, Mathématiques et modélisation, 2012, Université Montpellier II

Le contexte est la géométrie discrète dans Zn. Il s'agit de décrire les courbes et surfaces discrètes composées de voxels: les définitions usuelles de droites… (more)

Subjects/Keywords: Geométrie spectrale; Géométrie discrète; Estimation de courbure; Opérateur de Laplace; Estimations Normales; Spectral geometry; Discrete geometry; Curvature estimation; Laplace operator; Normals estimation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rieux, F. (2012). Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces. (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2012MON20201

Chicago Manual of Style (16th Edition):

Rieux, Frédéric. “Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces.” 2012. Doctoral Dissertation, Université Montpellier II. Accessed January 17, 2021. http://www.theses.fr/2012MON20201.

MLA Handbook (7th Edition):

Rieux, Frédéric. “Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces.” 2012. Web. 17 Jan 2021.

Vancouver:

Rieux F. Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces. [Internet] [Doctoral dissertation]. Université Montpellier II; 2012. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2012MON20201.

Council of Science Editors:

Rieux F. Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces : Digital diffusion processes : discrete Laplace operator for discrete surfaces. [Doctoral Dissertation]. Université Montpellier II; 2012. Available from: http://www.theses.fr/2012MON20201

26. Gautier-Baudhuit, Franck. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.

Degree: Docteur es, Mathématiques Fondamentales, 2017, Clermont Auvergne

Cette thèse s'intéresse à des familles de fonctions zêta spectrales (séries de Dirichlet) qui peuvent être associées à certaines algèbres d'opérateurs sur des espaces de… (more)

Subjects/Keywords: Algèbres de Lie nilpotentes; Fonctions zêta spectrales; Géométrie différentielle; Géométrie non commutative; Laplacien; Opérateurs différentiels; Opérateurs de Schrödinger; Prolongement méromorphe; Représentation de Kirillov; Tore non commutatif; Triplets spectraux; Nilpotent Lie algébras; Spectral zeta function; Differential geometry; Noncommutative geometry; Laplacian; Differential geometry; Schrödinger operators; Meromorphic continuation; Kirillov representation; Noncommutative torus; Spectral triples

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gautier-Baudhuit, F. (2017). Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. (Doctoral Dissertation). Clermont Auvergne. Retrieved from http://www.theses.fr/2017CLFAC042

Chicago Manual of Style (16th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Doctoral Dissertation, Clermont Auvergne. Accessed January 17, 2021. http://www.theses.fr/2017CLFAC042.

MLA Handbook (7th Edition):

Gautier-Baudhuit, Franck. “Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry.” 2017. Web. 17 Jan 2021.

Vancouver:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Internet] [Doctoral dissertation]. Clermont Auvergne; 2017. [cited 2021 Jan 17]. Available from: http://www.theses.fr/2017CLFAC042.

Council of Science Editors:

Gautier-Baudhuit F. Etude du prolongement méromorphe de fonctions zëta spectrales grâce à la géométrie non commutative : Meromorphic continuation of spectral zeta functions approach to noncommutative geometry. [Doctoral Dissertation]. Clermont Auvergne; 2017. Available from: http://www.theses.fr/2017CLFAC042

27. Sarhad, Jonathan Jesse. PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE.

Degree: Mathematics, 2010, University of California – Riverside

 This dissertation consists of two separate parts. The first part, Chapters 1 – 4, concerns the construction of a Dirac operator and spectral triple on the… (more)

Subjects/Keywords: Mathematics; fractal geometry; noncommutative geometry; nonlinear PDE; second order elliptic PDE; Sierpinski gasket; spectral geometry

…List of Figures x I 1 Spectral Geometry of the Harmonic Gasket 1 Introduction 1.1… …8 8 12 20 24 30 34 35 36 36 40 43 44 3 Spectral Triples, Noncommutative Geometry, and… …2 7 4 Spectral Triples and Measurable Riemannian Geometry 4.1 Overview and Notation… …113 x . . . . . . . . . . . . . . . . . . 4 4 Part I Spectral Geometry of the… …geometry of M . The spectral triple consists of the C ∗ -algebra of complex-continuous functions… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sarhad, J. J. (2010). PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/104557jt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sarhad, Jonathan Jesse. “PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE.” 2010. Thesis, University of California – Riverside. Accessed January 17, 2021. http://www.escholarship.org/uc/item/104557jt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sarhad, Jonathan Jesse. “PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE.” 2010. Web. 17 Jan 2021.

Vancouver:

Sarhad JJ. PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE. [Internet] [Thesis]. University of California – Riverside; 2010. [cited 2021 Jan 17]. Available from: http://www.escholarship.org/uc/item/104557jt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sarhad JJ. PART I: SPECTRAL GEOMETRY OF THE HARMONIC GASKET PART II: NONLINEAR POISSON EQUATION VIA A NEWTON-EMBEDDING PROCEDURE. [Thesis]. University of California – Riverside; 2010. Available from: http://www.escholarship.org/uc/item/104557jt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

28. Sutton, Craig Jerome. Applications of representation theory to dynamics and spectral geometry.

Degree: PhD, Pure Sciences, 2001, University of Michigan

 We address the areas of dynamics and spectral geometry through the use of representation theory. In Chapter III we study dynamics. In particular, we establish… (more)

Subjects/Keywords: Applications; Dynamics; Geodesic Flow; Geodesic Flows; Representation Theory; Riemannian Manifolds; Spectral Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sutton, C. J. (2001). Applications of representation theory to dynamics and spectral geometry. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126589

Chicago Manual of Style (16th Edition):

Sutton, Craig Jerome. “Applications of representation theory to dynamics and spectral geometry.” 2001. Doctoral Dissertation, University of Michigan. Accessed January 17, 2021. http://hdl.handle.net/2027.42/126589.

MLA Handbook (7th Edition):

Sutton, Craig Jerome. “Applications of representation theory to dynamics and spectral geometry.” 2001. Web. 17 Jan 2021.

Vancouver:

Sutton CJ. Applications of representation theory to dynamics and spectral geometry. [Internet] [Doctoral dissertation]. University of Michigan; 2001. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2027.42/126589.

Council of Science Editors:

Sutton CJ. Applications of representation theory to dynamics and spectral geometry. [Doctoral Dissertation]. University of Michigan; 2001. Available from: http://hdl.handle.net/2027.42/126589


Université Catholique de Louvain

29. Chang, Chia-Tche. Heuristic optimization methods for three matrix problems.

Degree: 2012, Université Catholique de Louvain

Optimization is a major field in applied mathematics. Many applications involve the search of the best solution to a problem according to some criterion. Depending… (more)

Subjects/Keywords: Heuristics; Metaheuristics; Feature selection; Dynamical system; Switching system; Genetic algorithm; Optimization; Algorithmics; Oriented bounding box; Subset selection; Joint spectral radius; Computational methods; Experimental analysis; Computational geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, C. (2012). Heuristic optimization methods for three matrix problems. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/120115

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chang, Chia-Tche. “Heuristic optimization methods for three matrix problems.” 2012. Thesis, Université Catholique de Louvain. Accessed January 17, 2021. http://hdl.handle.net/2078.1/120115.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chang, Chia-Tche. “Heuristic optimization methods for three matrix problems.” 2012. Web. 17 Jan 2021.

Vancouver:

Chang C. Heuristic optimization methods for three matrix problems. [Internet] [Thesis]. Université Catholique de Louvain; 2012. [cited 2021 Jan 17]. Available from: http://hdl.handle.net/2078.1/120115.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang C. Heuristic optimization methods for three matrix problems. [Thesis]. Université Catholique de Louvain; 2012. Available from: http://hdl.handle.net/2078.1/120115

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


KTH

30. Oudich, Hamza. Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications.

Degree: Vehicle Engineering and Solid Mechanics, 2020, KTH

  Due to their large torque-speed ratio and transmission efficiency, planetary gears are widely used in the automotive industry. However, high amplitude vibrations remain their… (more)

Subjects/Keywords: Planetary gears; Instabilities; Resonance; Vibration; dynamic response; Spectral Iterative Method; Modal analysis; Static and dynamic transmission error; Gear mesh stiffness; Macro and micro-geometry; Phasing; Applied Mechanics; Teknisk mekanik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oudich, H. (2020). Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276775

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Oudich, Hamza. “Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications.” 2020. Thesis, KTH. Accessed January 17, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276775.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Oudich, Hamza. “Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications.” 2020. Web. 17 Jan 2021.

Vancouver:

Oudich H. Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications. [Internet] [Thesis]. KTH; 2020. [cited 2021 Jan 17]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276775.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Oudich H. Analytical Investigation of Planetary Gears Instabilities and the Impact of Micro-Macro Geometry Modifications. [Thesis]. KTH; 2020. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276775

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.