Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Language: English

You searched for subject:(Special linear groups). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Brigham Young University

1. Wagner, David R. Schur Rings Over Projective Special Linear Groups.

Degree: MS, 2016, Brigham Young University

 This thesis presents an introduction to Schur rings (S-rings) and their various properties. Special attention is given to S-rings that are commutative. A number of… (more)

Subjects/Keywords: Schur rings; association schemes; algebraic combinatorics; projective special linear groups; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wagner, D. R. (2016). Schur Rings Over Projective Special Linear Groups. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7088&context=etd

Chicago Manual of Style (16th Edition):

Wagner, David R. “Schur Rings Over Projective Special Linear Groups.” 2016. Masters Thesis, Brigham Young University. Accessed October 23, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7088&context=etd.

MLA Handbook (7th Edition):

Wagner, David R. “Schur Rings Over Projective Special Linear Groups.” 2016. Web. 23 Oct 2020.

Vancouver:

Wagner DR. Schur Rings Over Projective Special Linear Groups. [Internet] [Masters thesis]. Brigham Young University; 2016. [cited 2020 Oct 23]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7088&context=etd.

Council of Science Editors:

Wagner DR. Schur Rings Over Projective Special Linear Groups. [Masters Thesis]. Brigham Young University; 2016. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7088&context=etd


University of North Texas

2. Hayes, Diana Margaret. Minimality of the Special Linear Groups.

Degree: 1997, University of North Texas

 Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear(more)

Subjects/Keywords: Minimality; Special linear groups; Lie groups.; Topological groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hayes, D. M. (1997). Minimality of the Special Linear Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc279280/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hayes, Diana Margaret. “Minimality of the Special Linear Groups.” 1997. Thesis, University of North Texas. Accessed October 23, 2020. https://digital.library.unt.edu/ark:/67531/metadc279280/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hayes, Diana Margaret. “Minimality of the Special Linear Groups.” 1997. Web. 23 Oct 2020.

Vancouver:

Hayes DM. Minimality of the Special Linear Groups. [Internet] [Thesis]. University of North Texas; 1997. [cited 2020 Oct 23]. Available from: https://digital.library.unt.edu/ark:/67531/metadc279280/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hayes DM. Minimality of the Special Linear Groups. [Thesis]. University of North Texas; 1997. Available from: https://digital.library.unt.edu/ark:/67531/metadc279280/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Strayer, Michael Christopher. Orders of Perfect Groups with Dihedral Involution Centralizers.

Degree: MS, Mathematics, 2013, University of Akron

 Let G be a finite group that is equal to its commutator subgroup, and suppose that G contains an element of order 2 whose centralizer… (more)

Subjects/Keywords: Mathematics; simple groups; dihedral groups; involutions; projective special linear groups; character theory

…in the theory of finite groups. For an arbitrary prime power q, the special linear group SL… …of q elements. The projective special linear group P SL(2, q) is defined as P SL… …CHAPTER I INTRODUCTION All groups in this thesis are considered to be finite. Given a… …understood that finite simple groups form the building blocks of all finite groups. Hence, the… …study and classification of finite simple groups has been one of the most fundamental problems… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Strayer, M. C. (2013). Orders of Perfect Groups with Dihedral Involution Centralizers. (Masters Thesis). University of Akron. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=akron1365259761

Chicago Manual of Style (16th Edition):

Strayer, Michael Christopher. “Orders of Perfect Groups with Dihedral Involution Centralizers.” 2013. Masters Thesis, University of Akron. Accessed October 23, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1365259761.

MLA Handbook (7th Edition):

Strayer, Michael Christopher. “Orders of Perfect Groups with Dihedral Involution Centralizers.” 2013. Web. 23 Oct 2020.

Vancouver:

Strayer MC. Orders of Perfect Groups with Dihedral Involution Centralizers. [Internet] [Masters thesis]. University of Akron; 2013. [cited 2020 Oct 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1365259761.

Council of Science Editors:

Strayer MC. Orders of Perfect Groups with Dihedral Involution Centralizers. [Masters Thesis]. University of Akron; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1365259761

4. Cui, Peiyi. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).

Degree: Docteur es, Mathématiques et leurs interactions, 2019, Rennes 1

Fixons un nombre premier p. Soit k un corps algébriquement clos de caractéristique l différent que p. Nous construisons les k-types maximaux simples cuspidaux des… (more)

Subjects/Keywords: Représentations modulo l; Groupes spéciaux linéaires p-Adiques; Support supercuspidal; Types de Bushnell-Kutzko; Modular l representations; P-Adic special linear groups; Supercuspidal support; Bushnell-Kutzko types

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, P. (2019). Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2019REN1S050

Chicago Manual of Style (16th Edition):

Cui, Peiyi. “Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).” 2019. Doctoral Dissertation, Rennes 1. Accessed October 23, 2020. http://www.theses.fr/2019REN1S050.

MLA Handbook (7th Edition):

Cui, Peiyi. “Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).” 2019. Web. 23 Oct 2020.

Vancouver:

Cui P. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). [Internet] [Doctoral dissertation]. Rennes 1; 2019. [cited 2020 Oct 23]. Available from: http://www.theses.fr/2019REN1S050.

Council of Science Editors:

Cui P. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). [Doctoral Dissertation]. Rennes 1; 2019. Available from: http://www.theses.fr/2019REN1S050

5. Balachandran, Niranjan. The 3-Design Problem.

Degree: PhD, Mathematics, 2008, The Ohio State University

  This dissertation studies the ‘asymptotic existence’ conjecture for 3-designs with the primary goal of constructing new families of 3-designs. More specifically, this dissertation includes… (more)

Subjects/Keywords: Mathematics; 3-design; Candelabra system; projective special linear groups

…67 3.1 3.2 Classical 3-transitive groups The Groups PSL(2, q), q odd The case q… …involves constructions for designs with large automorphism groups and the problem of enumeration… …Groups, fields, rings, etc). One may then use other (combinatorial) methods to… …need an infinite family of groups to use this technique effectively. An attempt to describe… …groups in this thesis. One such interesting family of groups is PGL(2, q), for q a… 

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Balachandran, N. (2008). The 3-Design Problem. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1211922186

Chicago Manual of Style (16th Edition):

Balachandran, Niranjan. “The 3-Design Problem.” 2008. Doctoral Dissertation, The Ohio State University. Accessed October 23, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211922186.

MLA Handbook (7th Edition):

Balachandran, Niranjan. “The 3-Design Problem.” 2008. Web. 23 Oct 2020.

Vancouver:

Balachandran N. The 3-Design Problem. [Internet] [Doctoral dissertation]. The Ohio State University; 2008. [cited 2020 Oct 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1211922186.

Council of Science Editors:

Balachandran N. The 3-Design Problem. [Doctoral Dissertation]. The Ohio State University; 2008. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1211922186

.