Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Spaces of Sobolev). Showing records 1 – 20 of 20 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Australian National University

1. Amenta, Alex. Extensions of the theory of tent spaces and applications to boundary value problems .

Degree: 2016, Australian National University

 We extend the theory of tent spaces from Euclidean spaces to various types of metric measure spaces. For doubling spaces we show that the usual… (more)

Subjects/Keywords: tent spaces; metric measure spaces; interpolation; hardy-sobolev spaces; besov spaces; elliptic boundary value problems; functional calculus; off-diagonal estimates; cauchy-riemann systems; semigroups of operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amenta, A. (2016). Extensions of the theory of tent spaces and applications to boundary value problems . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/102564

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Amenta, Alex. “Extensions of the theory of tent spaces and applications to boundary value problems .” 2016. Thesis, Australian National University. Accessed January 19, 2020. http://hdl.handle.net/1885/102564.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Amenta, Alex. “Extensions of the theory of tent spaces and applications to boundary value problems .” 2016. Web. 19 Jan 2020.

Vancouver:

Amenta A. Extensions of the theory of tent spaces and applications to boundary value problems . [Internet] [Thesis]. Australian National University; 2016. [cited 2020 Jan 19]. Available from: http://hdl.handle.net/1885/102564.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amenta A. Extensions of the theory of tent spaces and applications to boundary value problems . [Thesis]. Australian National University; 2016. Available from: http://hdl.handle.net/1885/102564

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Carlos Augusto David Ribeiro. Teorema de Hodge e aplicaÃÃes.

Degree: Master, 2008, Universidade Federal do Ceará

O presente trabalho aborda um teorema classico de decomposiÃÃo do espaÃo das p-formas suaves sobre uma variedade Riemaniana compacta e orientada, conhecido como teorema da… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; formas diferenciais; cohomologia de DRhan; espaÃos Sobolev; decomposiÃÃo do espaÃo das p-formas; distinguishing forms; cohomologia of DRhan; Sobolev spaces; decomposition of the space of the p-forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ribeiro, C. A. D. (2008). Teorema de Hodge e aplicaÃÃes. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;

Chicago Manual of Style (16th Edition):

Ribeiro, Carlos Augusto David. “Teorema de Hodge e aplicaÃÃes.” 2008. Masters Thesis, Universidade Federal do Ceará. Accessed January 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;.

MLA Handbook (7th Edition):

Ribeiro, Carlos Augusto David. “Teorema de Hodge e aplicaÃÃes.” 2008. Web. 19 Jan 2020.

Vancouver:

Ribeiro CAD. Teorema de Hodge e aplicaÃÃes. [Internet] [Masters thesis]. Universidade Federal do Ceará 2008. [cited 2020 Jan 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;.

Council of Science Editors:

Ribeiro CAD. Teorema de Hodge e aplicaÃÃes. [Masters Thesis]. Universidade Federal do Ceará 2008. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;


Penn State University

3. Qu, Qingqin. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.

Degree: PhD, Mathematics, 2012, Penn State University

 This dissertation is devoted to numerical approximation of partial differential equations by Generalized Finite Element Method (GFEM), which is closely related to some other methods,… (more)

Subjects/Keywords: Interface problems; Partition of unity; Generalized finite element method; Weighted Sobolev spaces; Optimal rate of Convergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qu, Q. (2012). The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/15427

Chicago Manual of Style (16th Edition):

Qu, Qingqin. “The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.” 2012. Doctoral Dissertation, Penn State University. Accessed January 19, 2020. https://etda.libraries.psu.edu/catalog/15427.

MLA Handbook (7th Edition):

Qu, Qingqin. “The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.” 2012. Web. 19 Jan 2020.

Vancouver:

Qu Q. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. [Internet] [Doctoral dissertation]. Penn State University; 2012. [cited 2020 Jan 19]. Available from: https://etda.libraries.psu.edu/catalog/15427.

Council of Science Editors:

Qu Q. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. [Doctoral Dissertation]. Penn State University; 2012. Available from: https://etda.libraries.psu.edu/catalog/15427

4. Xiong, Xiao. Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori.

Degree: Docteur es, Mathematiques, 2015, Besançon

Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs… (more)

Subjects/Keywords: Tore quantique; Espaces Lp non commutatifs caractérisation; Espaces de Sobolev; Espaces de Besov; Espaces de Triebel-Lizorkin; Plongement; Multiplicateurs de Fourier; Spaces of Sobolev; Spaces of Besov; Spaces of Triebel–Lizorkin; Quantum tori; 512

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiong, X. (2015). Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori. (Doctoral Dissertation). Besançon. Retrieved from http://www.theses.fr/2015BESA2029

Chicago Manual of Style (16th Edition):

Xiong, Xiao. “Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori.” 2015. Doctoral Dissertation, Besançon. Accessed January 19, 2020. http://www.theses.fr/2015BESA2029.

MLA Handbook (7th Edition):

Xiong, Xiao. “Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori.” 2015. Web. 19 Jan 2020.

Vancouver:

Xiong X. Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori. [Internet] [Doctoral dissertation]. Besançon; 2015. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2015BESA2029.

Council of Science Editors:

Xiong X. Espaces de fonctions sur les tores quantiques : Function spaces on quantum lori. [Doctoral Dissertation]. Besançon; 2015. Available from: http://www.theses.fr/2015BESA2029


Dalhousie University

5. Mombourquette, Ethan. On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations.

Degree: MS, Department of Mathematics & Statistics - Math Division, 2013, Dalhousie University

 For degenerate elliptic partial differential equations, it is often desirable to show that a weak solution is smooth. The first and most difficult step in… (more)

Subjects/Keywords: elliptic PDE; pde; partial differential equations; degenerate sobolev spaces; regularity of weak solutions; elliptic equations; analysis; harmonic analysis; functional analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mombourquette, E. (2013). On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations. (Masters Thesis). Dalhousie University. Retrieved from http://hdl.handle.net/10222/35442

Chicago Manual of Style (16th Edition):

Mombourquette, Ethan. “On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations.” 2013. Masters Thesis, Dalhousie University. Accessed January 19, 2020. http://hdl.handle.net/10222/35442.

MLA Handbook (7th Edition):

Mombourquette, Ethan. “On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations.” 2013. Web. 19 Jan 2020.

Vancouver:

Mombourquette E. On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations. [Internet] [Masters thesis]. Dalhousie University; 2013. [cited 2020 Jan 19]. Available from: http://hdl.handle.net/10222/35442.

Council of Science Editors:

Mombourquette E. On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations. [Masters Thesis]. Dalhousie University; 2013. Available from: http://hdl.handle.net/10222/35442


University of Notre Dame

6. David Karapetyan. On the well-posedness of the hyperelastic rod equation</h1>.

Degree: PhD, Mathematics, 2012, University of Notre Dame

  It is shown that the data-to-solution map for the hyperelastic rod equation is not uniformly continuous on bounded sets of Sobolev spaces with exponent… (more)

Subjects/Keywords: energy estimates; Sobolev spaces; Hyperelastic rod equation; periodic; continuity of solution map; non-periodic; approximate solutions; well-posedness; initial value problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karapetyan, D. (2012). On the well-posedness of the hyperelastic rod equation</h1>. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/dv13zs28169

Chicago Manual of Style (16th Edition):

Karapetyan, David. “On the well-posedness of the hyperelastic rod equation</h1>.” 2012. Doctoral Dissertation, University of Notre Dame. Accessed January 19, 2020. https://curate.nd.edu/show/dv13zs28169.

MLA Handbook (7th Edition):

Karapetyan, David. “On the well-posedness of the hyperelastic rod equation</h1>.” 2012. Web. 19 Jan 2020.

Vancouver:

Karapetyan D. On the well-posedness of the hyperelastic rod equation</h1>. [Internet] [Doctoral dissertation]. University of Notre Dame; 2012. [cited 2020 Jan 19]. Available from: https://curate.nd.edu/show/dv13zs28169.

Council of Science Editors:

Karapetyan D. On the well-posedness of the hyperelastic rod equation</h1>. [Doctoral Dissertation]. University of Notre Dame; 2012. Available from: https://curate.nd.edu/show/dv13zs28169


Univerzitet u Beogradu

7. Delić, Aleksandra M., 1982-. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Математика - Нумеричка математика / Mathematics - Numerical Mathematics

Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузионе или таласне једначине заменом првог, односно другог извода по временској променљивој изводом разломљеног реда...

Advisors/Committee Members: Jovanović, Boško, 1946-.

Subjects/Keywords: fractional derivatives; subdiusion; superdiusion; interface problems; Sobolev spaces; weak solutions; a priori estimate; nite dierence; rate of convergance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Delić, Aleksandra M., 1. (2016). Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Delić, Aleksandra M., 1982-. “Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.” 2016. Thesis, Univerzitet u Beogradu. Accessed January 19, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Delić, Aleksandra M., 1982-. “Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика.” 2016. Web. 19 Jan 2020.

Vancouver:

Delić, Aleksandra M. 1. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Jan 19]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Delić, Aleksandra M. 1. Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

8. Vasiliu, Daniel. Constrained lower semicontinuity problems in the calculus of variations.

Degree: PhD, Department of Mathematics, 2004, Michigan State University

Subjects/Keywords: Calculus of variations; Sobolev spaces; Functions, Continuous

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vasiliu, D. (2004). Constrained lower semicontinuity problems in the calculus of variations. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:32660

Chicago Manual of Style (16th Edition):

Vasiliu, Daniel. “Constrained lower semicontinuity problems in the calculus of variations.” 2004. Doctoral Dissertation, Michigan State University. Accessed January 19, 2020. http://etd.lib.msu.edu/islandora/object/etd:32660.

MLA Handbook (7th Edition):

Vasiliu, Daniel. “Constrained lower semicontinuity problems in the calculus of variations.” 2004. Web. 19 Jan 2020.

Vancouver:

Vasiliu D. Constrained lower semicontinuity problems in the calculus of variations. [Internet] [Doctoral dissertation]. Michigan State University; 2004. [cited 2020 Jan 19]. Available from: http://etd.lib.msu.edu/islandora/object/etd:32660.

Council of Science Editors:

Vasiliu D. Constrained lower semicontinuity problems in the calculus of variations. [Doctoral Dissertation]. Michigan State University; 2004. Available from: http://etd.lib.msu.edu/islandora/object/etd:32660

9. Korte, Riikka. Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities.

Degree: 2008, Helsinki University of Technology

This dissertation studies analysis in metric spaces that are equipped with a doubling measure and satisfy a Poincaré inequality. The treatise consists of four articles… (more)

Subjects/Keywords: boxing inequality; capacity; doubling measure; functions of bounded variation; Hausdorff content; Lebesgue points; metric spaces; modulus; Newtonian spaces; Poincaré inequality; quasiconvexity; Sobolev–Poincaré inequality; Sobolev spaces; boxing epäyhtälö; BV-funktiot; Hausdorff-kontentti; kapasiteetti; kvasikonveksisuus; Lebesguen pisteet; metriset avaruudet; Newtonin avaruudet; Poincarén epäyhtälö; Sobolevin avaruudet; Sobolev–Poincaré epäyhtälö; tuplaava mitta

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Korte, R. (2008). Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2008/isbn9789512292110/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Korte, Riikka. “Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities.” 2008. Thesis, Helsinki University of Technology. Accessed January 19, 2020. http://lib.tkk.fi/Diss/2008/isbn9789512292110/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Korte, Riikka. “Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities.” 2008. Web. 19 Jan 2020.

Vancouver:

Korte R. Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities. [Internet] [Thesis]. Helsinki University of Technology; 2008. [cited 2020 Jan 19]. Available from: http://lib.tkk.fi/Diss/2008/isbn9789512292110/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Korte R. Geometric Properties of Metric Measure Spaces and Sobolev-Type Inequalities. [Thesis]. Helsinki University of Technology; 2008. Available from: http://lib.tkk.fi/Diss/2008/isbn9789512292110/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Texas

10. McCabe, Terence W. (Terence William). Minimization of a Nonlinear Elasticity Functional Using Steepest Descent.

Degree: 1988, University of North Texas

The method of steepest descent is used to minimize typical functionals from elasticity. Advisors/Committee Members: Neuberger, John W., Renka, Robert J., Castro, Alfonso, 1950-, Warchall, Henry Alexander, Lewis, Paul Weldon.

Subjects/Keywords: theory of descent; sobolev spaces; steepest descent; elasticity; Nonlinear functional analysis.; Elasticity.; Theory of descent (Mathematics); Sobolev spaces.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McCabe, T. W. (. W. (1988). Minimization of a Nonlinear Elasticity Functional Using Steepest Descent. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331296/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McCabe, Terence W (Terence William). “Minimization of a Nonlinear Elasticity Functional Using Steepest Descent.” 1988. Thesis, University of North Texas. Accessed January 19, 2020. https://digital.library.unt.edu/ark:/67531/metadc331296/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McCabe, Terence W (Terence William). “Minimization of a Nonlinear Elasticity Functional Using Steepest Descent.” 1988. Web. 19 Jan 2020.

Vancouver:

McCabe TW(W. Minimization of a Nonlinear Elasticity Functional Using Steepest Descent. [Internet] [Thesis]. University of North Texas; 1988. [cited 2020 Jan 19]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331296/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McCabe TW(W. Minimization of a Nonlinear Elasticity Functional Using Steepest Descent. [Thesis]. University of North Texas; 1988. Available from: https://digital.library.unt.edu/ark:/67531/metadc331296/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Texas

11. Mahavier, William Ted. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.

Degree: 1995, University of North Texas

 We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential… (more)

Subjects/Keywords: Differential equations.; Sobolev spaces.; Method of steepest descent (Numerical analysis); weighted sobolev spaces; differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mahavier, W. T. (1995). A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278653/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mahavier, William Ted. “A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.” 1995. Thesis, University of North Texas. Accessed January 19, 2020. https://digital.library.unt.edu/ark:/67531/metadc278653/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mahavier, William Ted. “A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.” 1995. Web. 19 Jan 2020.

Vancouver:

Mahavier WT. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. [Internet] [Thesis]. University of North Texas; 1995. [cited 2020 Jan 19]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278653/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mahavier WT. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. [Thesis]. University of North Texas; 1995. Available from: https://digital.library.unt.edu/ark:/67531/metadc278653/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Pozzi, Élodie. Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.

Degree: Docteur es, Mathématiques, 2011, Université Claude Bernard – Lyon I

Cette thèse est dédiée à l'étude d'opérateurs de composition pondérés sur plusieurs espaces fonctionnels sous fond du problème du sous-espace invariant. Cet important problème ouvert… (more)

Subjects/Keywords: Opérateurs de composition à poids; Shifts pondérés; Espaces de Sobolev; Espaces de Hardy du demi-plan supérieur; Espaces de Hardy de l'anneau; Propriétés spectrales; Approximation diophantienne; Cyclicité; Weighted composition operators; Weighted shifts; Sobolev spaces; Hardy spaces of the upper half-plane; Hardy spaces of the annulus; Spectral properties; Diophantine approximation; Cyclicity; 515.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pozzi, . (2011). Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2011LYO10186

Chicago Manual of Style (16th Edition):

Pozzi, Élodie. “Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.” 2011. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed January 19, 2020. http://www.theses.fr/2011LYO10186.

MLA Handbook (7th Edition):

Pozzi, Élodie. “Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.” 2011. Web. 19 Jan 2020.

Vancouver:

Pozzi . Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2011. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2011LYO10186.

Council of Science Editors:

Pozzi . Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2011. Available from: http://www.theses.fr/2011LYO10186

13. Ben Ayed, Inès. Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications.

Degree: Docteur es, Mathématiques, 2015, Université Paris-Est

Dans cette thèse, on s'est attaché d'une part à d'écrire le défaut de compacité de l'injection de Sobolev critique dans les différentes classes d'espaces d'Orlicz,… (more)

Subjects/Keywords: Injections de Sobolev critiques; Espaces d’Orlicz; Défaut de compacité; Équation de Klein-Gordon; Décompositions en profils; Notion de log-Oscillante; Critical Sobolev embeddings; Orlicz spaces; Lack of compactness; Klein-Gordon equation; Profile decompositions; Notion of log-Oscillating

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ben Ayed, I. (2015). Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2015PESC1133

Chicago Manual of Style (16th Edition):

Ben Ayed, Inès. “Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications.” 2015. Doctoral Dissertation, Université Paris-Est. Accessed January 19, 2020. http://www.theses.fr/2015PESC1133.

MLA Handbook (7th Edition):

Ben Ayed, Inès. “Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications.” 2015. Web. 19 Jan 2020.

Vancouver:

Ben Ayed I. Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications. [Internet] [Doctoral dissertation]. Université Paris-Est; 2015. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2015PESC1133.

Council of Science Editors:

Ben Ayed I. Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications : Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications. [Doctoral Dissertation]. Université Paris-Est; 2015. Available from: http://www.theses.fr/2015PESC1133

14. Zghal, Mohamed Khalil. Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications.

Degree: Docteur es, Mathématiques, 2016, Université Paris-Est

Cette thèse porte sur quelques inégalités de type Trudinger-Moser et leurs applications à l'étude des injections de Sobolev qu'elles induisent dans les espaces d'Orlicz et… (more)

Subjects/Keywords: Inégalités de Trudinger-Moser; Injections de Sobolev; Espaces d'Orlicz; Défaut de compacité; Équation de Klein-Gordon; Inégalités de Hardy; Trudinger-Moser inequalities; Sobolev embeddings; Orlicz spaces; Lack of compactness; Klein-Gordon equation; Hardy inequalities

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zghal, M. K. (2016). Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2016PESC1077

Chicago Manual of Style (16th Edition):

Zghal, Mohamed Khalil. “Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications.” 2016. Doctoral Dissertation, Université Paris-Est. Accessed January 19, 2020. http://www.theses.fr/2016PESC1077.

MLA Handbook (7th Edition):

Zghal, Mohamed Khalil. “Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications.” 2016. Web. 19 Jan 2020.

Vancouver:

Zghal MK. Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications. [Internet] [Doctoral dissertation]. Université Paris-Est; 2016. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2016PESC1077.

Council of Science Editors:

Zghal MK. Inégalités de type Trudinger-Moser et applications : Trudinger-Moser type inequalities and applications. [Doctoral Dissertation]. Université Paris-Est; 2016. Available from: http://www.theses.fr/2016PESC1077

15. Papafitsoros, Konstantinos. Novel higher order regularisation methods for image reconstruction.

Degree: PhD, 2015, University of Cambridge

 In this thesis we study novel higher order total variation-based variational methods for digital image reconstruction. These methods are formulated in the context of Tikhonov… (more)

Subjects/Keywords: 621.36; Higher order total variation; Functions of bounded Hessian; Total generalised variation; Denoising; Deblurring; Inpainting; Staircasing effect; Split Bregman; Exact TGV solutions; Non-local Hessian; Characterisation of higher order Sobolev and BV spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Papafitsoros, K. (2015). Novel higher order regularisation methods for image reconstruction. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/246692 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637102

Chicago Manual of Style (16th Edition):

Papafitsoros, Konstantinos. “Novel higher order regularisation methods for image reconstruction.” 2015. Doctoral Dissertation, University of Cambridge. Accessed January 19, 2020. https://www.repository.cam.ac.uk/handle/1810/246692 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637102.

MLA Handbook (7th Edition):

Papafitsoros, Konstantinos. “Novel higher order regularisation methods for image reconstruction.” 2015. Web. 19 Jan 2020.

Vancouver:

Papafitsoros K. Novel higher order regularisation methods for image reconstruction. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2020 Jan 19]. Available from: https://www.repository.cam.ac.uk/handle/1810/246692 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637102.

Council of Science Editors:

Papafitsoros K. Novel higher order regularisation methods for image reconstruction. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/246692 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637102

16. Papafitsoros, Konstantinos. Novel higher order regularisation methods for image reconstruction.

Degree: PhD, 2015, University of Cambridge

 In this thesis we study novel higher order total variation-based variational methods for digital image reconstruction. These methods are formulated in the context of Tikhonov… (more)

Subjects/Keywords: Higher order total variation; Functions of bounded Hessian; Total generalised variation; Denoising; Deblurring; Inpainting; Staircasing effect; Split Bregman; Exact TGV solutions; Non-local Hessian; Characterisation of higher order Sobolev and BV spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Papafitsoros, K. (2015). Novel higher order regularisation methods for image reconstruction. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/246692https://www.repository.cam.ac.uk/bitstream/1810/246692/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/246692/6/thesis.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/7/thesis.pdf.jpg

Chicago Manual of Style (16th Edition):

Papafitsoros, Konstantinos. “Novel higher order regularisation methods for image reconstruction.” 2015. Doctoral Dissertation, University of Cambridge. Accessed January 19, 2020. https://www.repository.cam.ac.uk/handle/1810/246692https://www.repository.cam.ac.uk/bitstream/1810/246692/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/246692/6/thesis.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/7/thesis.pdf.jpg.

MLA Handbook (7th Edition):

Papafitsoros, Konstantinos. “Novel higher order regularisation methods for image reconstruction.” 2015. Web. 19 Jan 2020.

Vancouver:

Papafitsoros K. Novel higher order regularisation methods for image reconstruction. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2020 Jan 19]. Available from: https://www.repository.cam.ac.uk/handle/1810/246692https://www.repository.cam.ac.uk/bitstream/1810/246692/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/246692/6/thesis.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/7/thesis.pdf.jpg.

Council of Science Editors:

Papafitsoros K. Novel higher order regularisation methods for image reconstruction. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/246692https://www.repository.cam.ac.uk/bitstream/1810/246692/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/3/license_rdf ; https://www.repository.cam.ac.uk/bitstream/1810/246692/6/thesis.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/246692/7/thesis.pdf.jpg

17. Αντωνόπουλος, Δημήτριος. Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση.

Degree: 2000, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

Subjects/Keywords: Μοναχικά κύματα; Διάδοση προς δύο κατευθύνσεις; Συναρτήσεις Green; Χώροι Sobolev; Ελλειπτικές προβολές; Κυβικές slines; Μέθοδος Runge-Kutta; Αλληλεπίδραση μοναχικών κυμάτων; Solitary waves; Two-way propagation; Green's functions; Sobolev spaces; Elliptic projections; Cubic splines; Runge-Kutta method; Interaction of solitary waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Αντωνόπουλος, . . (2000). Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση. (Thesis). National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Retrieved from http://hdl.handle.net/10442/hedi/19160

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Αντωνόπουλος, Δημήτριος. “Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση.” 2000. Thesis, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Accessed January 19, 2020. http://hdl.handle.net/10442/hedi/19160.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Αντωνόπουλος, Δημήτριος. “Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση.” 2000. Web. 19 Jan 2020.

Vancouver:

Αντωνόπουλος . Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση. [Internet] [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2000. [cited 2020 Jan 19]. Available from: http://hdl.handle.net/10442/hedi/19160.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Αντωνόπουλος . Το σύστημα των εξισώσεων Boussinesq: θεωρία και αριθμητική ανάλυση. [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2000. Available from: http://hdl.handle.net/10442/hedi/19160

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Debroux, Noémie. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.

Degree: Docteur es, Mathématiques appliquées, 2018, Normandie

Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier… (more)

Subjects/Keywords: Modèles conjoints; Détection de structures fines; Méthodes variationnelles; Gamma-Convergence; Variation totale pondérée et caractérisation non locale; Opérateurs non locaux du second ordre; Fonctionnelles de Mumford-Shah et Blake-Zisserman; Méthode de supergradient; Registration; Joint models; Fine structures detection; Variational methods; Hyperelasticity; Elliptic approximations; Gamma-Convergence; Nonlocal characterization of weighted total variation; Nonlocal second order operators; Mumford-Shah functionnal; Blake-Zisserman functionnal; Space of oscillatroy functions; Fractional Sobolev spaces; Tempered distributions; Quasi-Convexity; Weak viscosity solutions; Augmented Lagrangian; Supergradient method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Debroux, N. (2018). Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. (Doctoral Dissertation). Normandie. Retrieved from http://www.theses.fr/2018NORMIR02

Chicago Manual of Style (16th Edition):

Debroux, Noémie. “Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.” 2018. Doctoral Dissertation, Normandie. Accessed January 19, 2020. http://www.theses.fr/2018NORMIR02.

MLA Handbook (7th Edition):

Debroux, Noémie. “Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.” 2018. Web. 19 Jan 2020.

Vancouver:

Debroux N. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. [Internet] [Doctoral dissertation]. Normandie; 2018. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2018NORMIR02.

Council of Science Editors:

Debroux N. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. [Doctoral Dissertation]. Normandie; 2018. Available from: http://www.theses.fr/2018NORMIR02


ETH Zürich

19. Kazeev, Vladimir. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.

Degree: 2015, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); APPROXIMATION VON FUNKTIONEN (NUMERISCHE MATHEMATIK); POLYGONGEOMETRIE; APPROXIMATION OF FUNCTIONS (NUMERICAL MATHEMATICS); GEOMETRY OF POLYGONS; SOBOLEV-RÄUME (FUNKTIONALANALYSIS); ELLIPTISCHE DIFFERENTIALGLEICHUNGEN ZWEITER ORDNUNG (NUMERISCHE MATHEMATIK); SOBOLEV SPACES (FUNCTIONAL ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); ELLIPTIC DIFFERENTIAL EQUATIONS OF SECOND ORDER (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kazeev, V. (2015). Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/107311

Chicago Manual of Style (16th Edition):

Kazeev, Vladimir. “Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.” 2015. Doctoral Dissertation, ETH Zürich. Accessed January 19, 2020. http://hdl.handle.net/20.500.11850/107311.

MLA Handbook (7th Edition):

Kazeev, Vladimir. “Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.” 2015. Web. 19 Jan 2020.

Vancouver:

Kazeev V. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Jan 19]. Available from: http://hdl.handle.net/20.500.11850/107311.

Council of Science Editors:

Kazeev V. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/107311

20. Wyatt, Mitchell. Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement.

Degree: 2013, University of Alabama – Birmingham

Given an open set ­ in R<super>N</super>, N≥2, and a single piece of Dirichlet-Neumann data for a solution u of an equation of the form… (more)

Subjects/Keywords: Schrödinger equation.<; br>; Differential equations, Elliptic.<; br>; Inverse problems (Differential equations)<; br>; Sobolev spaces.<; br>; Functions of bounded variation.<; br>; Semiconductors – Mathematical models.<; br>; Interfaces (Physical sciences) – Mathematical models.

Sobolev spaces – definition and main properties Sobolev spaces are at the heart of modern PDE… …theory. Therefore, we give a brief exposition some aspects of the theory of Sobolev Spaces that… …These are just a few of the standard texts which treat the theory of Sobolev spaces. In what… …L p (Ω). The following is a standard result in the theory of Sobolev spaces. T… …10 1.2. Sobolev spaces of fractional order. In our definition of Sobolev spaces of… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wyatt, M. (2013). Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement. (Thesis). University of Alabama – Birmingham. Retrieved from http://contentdm.mhsl.uab.edu/u?/etd,1603

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wyatt, Mitchell. “Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement.” 2013. Thesis, University of Alabama – Birmingham. Accessed January 19, 2020. http://contentdm.mhsl.uab.edu/u?/etd,1603.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wyatt, Mitchell. “Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement.” 2013. Web. 19 Jan 2020.

Vancouver:

Wyatt M. Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement. [Internet] [Thesis]. University of Alabama – Birmingham; 2013. [cited 2020 Jan 19]. Available from: http://contentdm.mhsl.uab.edu/u?/etd,1603.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wyatt M. Uniqueness Of Potential In Schrödinger's Equation With One Boundary Measurement. [Thesis]. University of Alabama – Birmingham; 2013. Available from: http://contentdm.mhsl.uab.edu/u?/etd,1603

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.