Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Sobolev space). Showing records 1 – 30 of 32 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Wayne State University

1. Cui, Xiaoyue. New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces.

Degree: PhD, Mathematics, 2015, Wayne State University

This dissertation focuses on new characterizations of Sobolev spaces . It encompasses an in-depth study of Sobolev spaces on Heisenberg groups, as well as Carnot groups, second order and high order Sobolev spaces on Euclidean spaces. Advisors/Committee Members: Xiaoyue Cui.

Subjects/Keywords: Carnot Group; Heisenberg Group; Sobolev Space; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, X. (2015). New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1395

Chicago Manual of Style (16th Edition):

Cui, Xiaoyue. “New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces.” 2015. Doctoral Dissertation, Wayne State University. Accessed October 01, 2020. https://digitalcommons.wayne.edu/oa_dissertations/1395.

MLA Handbook (7th Edition):

Cui, Xiaoyue. “New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces.” 2015. Web. 01 Oct 2020.

Vancouver:

Cui X. New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2020 Oct 01]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1395.

Council of Science Editors:

Cui X. New Characterizations Of Sobolev Spaces On Heisenberg And Carnot Groups And High Order Sobolev Spaces On Eucliean Spaces. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1395

2. Landerson Bezerra Santiago. O nÃcleo do calor em uma variedade riemanniana.

Degree: Master, 2011, Universidade Federal do Ceará

Em uma variedade riemanniana conexa e compacta introduziremos o conceito de espectro do operador laplaciano. Utilizando a existÃncia e a unicidade do nÃcleo do calor… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Hilbert, espaÃo de; autovalores; Sobolev, espaÃo de; Hilbert space; eigenvalues; Sobolev spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Santiago, L. B. (2011). O nÃcleo do calor em uma variedade riemanniana. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5674 ;

Chicago Manual of Style (16th Edition):

Santiago, Landerson Bezerra. “O nÃcleo do calor em uma variedade riemanniana.” 2011. Masters Thesis, Universidade Federal do Ceará. Accessed October 01, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5674 ;.

MLA Handbook (7th Edition):

Santiago, Landerson Bezerra. “O nÃcleo do calor em uma variedade riemanniana.” 2011. Web. 01 Oct 2020.

Vancouver:

Santiago LB. O nÃcleo do calor em uma variedade riemanniana. [Internet] [Masters thesis]. Universidade Federal do Ceará 2011. [cited 2020 Oct 01]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5674 ;.

Council of Science Editors:

Santiago LB. O nÃcleo do calor em uma variedade riemanniana. [Masters Thesis]. Universidade Federal do Ceará 2011. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5674 ;


University of Louisville

3. Hapuarachchi, Sujeewa Indika. Regularized solutions for terminal problems of parabolic equations.

Degree: PhD, 2017, University of Louisville

  The heat equation with a terminal condition problem is not well-posed in the sense of Hadamard so regularization is needed. In general, partial differential… (more)

Subjects/Keywords: partial differential equation; sobolev space; regularization; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hapuarachchi, S. I. (2017). Regularized solutions for terminal problems of parabolic equations. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/2776 ; https://ir.library.louisville.edu/etd/2776

Chicago Manual of Style (16th Edition):

Hapuarachchi, Sujeewa Indika. “Regularized solutions for terminal problems of parabolic equations.” 2017. Doctoral Dissertation, University of Louisville. Accessed October 01, 2020. 10.18297/etd/2776 ; https://ir.library.louisville.edu/etd/2776.

MLA Handbook (7th Edition):

Hapuarachchi, Sujeewa Indika. “Regularized solutions for terminal problems of parabolic equations.” 2017. Web. 01 Oct 2020.

Vancouver:

Hapuarachchi SI. Regularized solutions for terminal problems of parabolic equations. [Internet] [Doctoral dissertation]. University of Louisville; 2017. [cited 2020 Oct 01]. Available from: 10.18297/etd/2776 ; https://ir.library.louisville.edu/etd/2776.

Council of Science Editors:

Hapuarachchi SI. Regularized solutions for terminal problems of parabolic equations. [Doctoral Dissertation]. University of Louisville; 2017. Available from: 10.18297/etd/2776 ; https://ir.library.louisville.edu/etd/2776

4. Flores, Cynthia Vanessa. On decay properties of solutions to the IVP for the Benjamin-Ono equation.

Degree: 2014, University of California – eScholarship, University of California

 In recent years there has been an intense activity in the study of harmonic analysis and its application to partial differential equations (PDEs). The tools… (more)

Subjects/Keywords: Mathematics; conserved quantities; dispersive equations; Partial Differential Equations; unique continuation; weighted Sobolev space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Flores, C. V. (2014). On decay properties of solutions to the IVP for the Benjamin-Ono equation. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/7fg8n1hf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Flores, Cynthia Vanessa. “On decay properties of solutions to the IVP for the Benjamin-Ono equation.” 2014. Thesis, University of California – eScholarship, University of California. Accessed October 01, 2020. http://www.escholarship.org/uc/item/7fg8n1hf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Flores, Cynthia Vanessa. “On decay properties of solutions to the IVP for the Benjamin-Ono equation.” 2014. Web. 01 Oct 2020.

Vancouver:

Flores CV. On decay properties of solutions to the IVP for the Benjamin-Ono equation. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2020 Oct 01]. Available from: http://www.escholarship.org/uc/item/7fg8n1hf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Flores CV. On decay properties of solutions to the IVP for the Benjamin-Ono equation. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/7fg8n1hf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Carlos Augusto David Ribeiro. Teorema de Hodge e aplicaÃÃes.

Degree: Master, 2008, Universidade Federal do Ceará

O presente trabalho aborda um teorema classico de decomposiÃÃo do espaÃo das p-formas suaves sobre uma variedade Riemaniana compacta e orientada, conhecido como teorema da… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; formas diferenciais; cohomologia de DRhan; espaÃos Sobolev; decomposiÃÃo do espaÃo das p-formas; distinguishing forms; cohomologia of DRhan; Sobolev spaces; decomposition of the space of the p-forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ribeiro, C. A. D. (2008). Teorema de Hodge e aplicaÃÃes. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;

Chicago Manual of Style (16th Edition):

Ribeiro, Carlos Augusto David. “Teorema de Hodge e aplicaÃÃes.” 2008. Masters Thesis, Universidade Federal do Ceará. Accessed October 01, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;.

MLA Handbook (7th Edition):

Ribeiro, Carlos Augusto David. “Teorema de Hodge e aplicaÃÃes.” 2008. Web. 01 Oct 2020.

Vancouver:

Ribeiro CAD. Teorema de Hodge e aplicaÃÃes. [Internet] [Masters thesis]. Universidade Federal do Ceará 2008. [cited 2020 Oct 01]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;.

Council of Science Editors:

Ribeiro CAD. Teorema de Hodge e aplicaÃÃes. [Masters Thesis]. Universidade Federal do Ceará 2008. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360 ;


University of Michigan

6. Shanmugalingam, Nageswari. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces.

Degree: PhD, Pure Sciences, 1999, University of Michigan

 This thesis studies a definition of Sobolev spaces on metric measure spaces, using the notion of upper gradients. Let X be a space equipped with… (more)

Subjects/Keywords: Extension; Metric Measure Spaces; Newtonian Spaces; Sobolev Space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shanmugalingam, N. (1999). Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131997

Chicago Manual of Style (16th Edition):

Shanmugalingam, Nageswari. “Newtonian spaces: An extension of Sobolev spaces to metric measure spaces.” 1999. Doctoral Dissertation, University of Michigan. Accessed October 01, 2020. http://hdl.handle.net/2027.42/131997.

MLA Handbook (7th Edition):

Shanmugalingam, Nageswari. “Newtonian spaces: An extension of Sobolev spaces to metric measure spaces.” 1999. Web. 01 Oct 2020.

Vancouver:

Shanmugalingam N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2027.42/131997.

Council of Science Editors:

Shanmugalingam N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131997

7. Han, Bang-Xian. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.

Degree: Docteur es, Sciences, 2015, Paris 9

Cette thèse traite de plusieurs sujets d'analyse dans les espaces métriques mesurés, en lien avec le transport optimal et des conditions de courbure-dimension. Nous considérons… (more)

Subjects/Keywords: Espace métrique mesuré; Condition de courbure-Dimension; Transport optimal; Espace de Sobolev; Théorie de Bakry-Emery; Tenseur de Ricci; Metric measure space; Curvature-Dimension condition; Optimal transport; Sobolev space; Bakry-Emery theory; Ricci tensor; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, B. (2015). Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2015PA090014

Chicago Manual of Style (16th Edition):

Han, Bang-Xian. “Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.” 2015. Doctoral Dissertation, Paris 9. Accessed October 01, 2020. http://www.theses.fr/2015PA090014.

MLA Handbook (7th Edition):

Han, Bang-Xian. “Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.” 2015. Web. 01 Oct 2020.

Vancouver:

Han B. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. [Internet] [Doctoral dissertation]. Paris 9; 2015. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2015PA090014.

Council of Science Editors:

Han B. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. [Doctoral Dissertation]. Paris 9; 2015. Available from: http://www.theses.fr/2015PA090014


Indian Institute of Science

8. Ram Mohan, Devang S. An Introduction to Minimal Surfaces.

Degree: MS, Faculty of Science, 2017, Indian Institute of Science

 In the first chapter of this report, our aim is to introduce harmonic maps between Riemann surfaces using the Energy integral of a map. Once… (more)

Subjects/Keywords: Minimal Surfaces; Riemann Surfaces; Harmonic Maps; Plateau's Problem; Riemannian Metric; Hilbert Space; Sobolev Space; Energy of a Map; Weingarten Map; Catenoid; Helicoid; Enneper Surface; Hurwitz's Automorphism Theorem; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ram Mohan, D. S. (2017). An Introduction to Minimal Surfaces. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2890

Chicago Manual of Style (16th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2017. Masters Thesis, Indian Institute of Science. Accessed October 01, 2020. http://etd.iisc.ac.in/handle/2005/2890.

MLA Handbook (7th Edition):

Ram Mohan, Devang S. “An Introduction to Minimal Surfaces.” 2017. Web. 01 Oct 2020.

Vancouver:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Internet] [Masters thesis]. Indian Institute of Science; 2017. [cited 2020 Oct 01]. Available from: http://etd.iisc.ac.in/handle/2005/2890.

Council of Science Editors:

Ram Mohan DS. An Introduction to Minimal Surfaces. [Masters Thesis]. Indian Institute of Science; 2017. Available from: http://etd.iisc.ac.in/handle/2005/2890


Linköping University

9. Färm, David. Upper gradients and Sobolev spaces on metric spaces.

Degree: Mathematics, 2006, Linköping University

  The Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the… (more)

Subjects/Keywords: capacity; measure; metric space; Sobolev space; upper gradient; MATHEMATICS; MATEMATIK

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Färm, D. (2006). Upper gradients and Sobolev spaces on metric spaces. (Thesis). Linköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Färm, David. “Upper gradients and Sobolev spaces on metric spaces.” 2006. Thesis, Linköping University. Accessed October 01, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Färm, David. “Upper gradients and Sobolev spaces on metric spaces.” 2006. Web. 01 Oct 2020.

Vancouver:

Färm D. Upper gradients and Sobolev spaces on metric spaces. [Internet] [Thesis]. Linköping University; 2006. [cited 2020 Oct 01]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Färm D. Upper gradients and Sobolev spaces on metric spaces. [Thesis]. Linköping University; 2006. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Aribi, Amine. Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds.

Degree: Docteur es, Mathématiques, 2012, Tours; Université de Tunis El Manar

Le but de cette thèse est d’étudier le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexe. Nous prouvons que le spectre du sous-laplacien Δb(more)

Subjects/Keywords: Sous-laplacien; Variété CR; Valeur propre; Structure pseudohermitienne; Inégalité universelle; Inégalité de Reilly; Formule de Bochner-Lichnerowicz; Espace de type Sobolev sur les variétés CR; Application harmonique sous-elliptique; Sublaplacian; CR manifold; Spectrum; Pseudohermitian structure; Webster metric; Fefferman metric; Sobolev type space; Bochner-Lichnerowicz formula; Reilly inequality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aribi, A. (2012). Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds. (Doctoral Dissertation). Tours; Université de Tunis El Manar. Retrieved from http://www.theses.fr/2012TOUR4018

Chicago Manual of Style (16th Edition):

Aribi, Amine. “Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds.” 2012. Doctoral Dissertation, Tours; Université de Tunis El Manar. Accessed October 01, 2020. http://www.theses.fr/2012TOUR4018.

MLA Handbook (7th Edition):

Aribi, Amine. “Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds.” 2012. Web. 01 Oct 2020.

Vancouver:

Aribi A. Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds. [Internet] [Doctoral dissertation]. Tours; Université de Tunis El Manar; 2012. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2012TOUR4018.

Council of Science Editors:

Aribi A. Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes : Spectrum of sublaplacians on strictly pseudoconvex CR manifolds. [Doctoral Dissertation]. Tours; Université de Tunis El Manar; 2012. Available from: http://www.theses.fr/2012TOUR4018

11. Herr, Sebastian. Well-posedness results for dispersive equations with derivative nonlinearities.

Degree: 2006, Technische Universität Dortmund

Subjects/Keywords: Cauchy problem; Dispersive equation; Nonlinear evolution equation; Sobolev space; Well-posedness; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herr, S. (2006). Well-posedness results for dispersive equations with derivative nonlinearities. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/22856

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herr, Sebastian. “Well-posedness results for dispersive equations with derivative nonlinearities.” 2006. Thesis, Technische Universität Dortmund. Accessed October 01, 2020. http://hdl.handle.net/2003/22856.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herr, Sebastian. “Well-posedness results for dispersive equations with derivative nonlinearities.” 2006. Web. 01 Oct 2020.

Vancouver:

Herr S. Well-posedness results for dispersive equations with derivative nonlinearities. [Internet] [Thesis]. Technische Universität Dortmund; 2006. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2003/22856.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herr S. Well-posedness results for dispersive equations with derivative nonlinearities. [Thesis]. Technische Universität Dortmund; 2006. Available from: http://hdl.handle.net/2003/22856

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

12. Zhang, Yajie. Transmission Problems for Parabolic Equations and Applications to the Finite Element Method.

Degree: 2017, Penn State University

 We study theoretical and practical issues of the second-order parabolic equation ut + Lu = f, where L = −div(A∇) is a second-order operator with… (more)

Subjects/Keywords: Well-posedness; Neumann-Neumann vertex; non-smooth interface; transmission problem; broken weighted Sobolev space; semigroup theory; finite element method with graded mesh

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2017). Transmission Problems for Parabolic Equations and Applications to the Finite Element Method. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/14527yxz170

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Yajie. “Transmission Problems for Parabolic Equations and Applications to the Finite Element Method.” 2017. Thesis, Penn State University. Accessed October 01, 2020. https://submit-etda.libraries.psu.edu/catalog/14527yxz170.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Yajie. “Transmission Problems for Parabolic Equations and Applications to the Finite Element Method.” 2017. Web. 01 Oct 2020.

Vancouver:

Zhang Y. Transmission Problems for Parabolic Equations and Applications to the Finite Element Method. [Internet] [Thesis]. Penn State University; 2017. [cited 2020 Oct 01]. Available from: https://submit-etda.libraries.psu.edu/catalog/14527yxz170.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Y. Transmission Problems for Parabolic Equations and Applications to the Finite Element Method. [Thesis]. Penn State University; 2017. Available from: https://submit-etda.libraries.psu.edu/catalog/14527yxz170

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Herr, Sebastian. Well-posedness results for dispersive equations with derivative nonlinearities.

Degree: 2006, Technische Universität Dortmund

Subjects/Keywords: Cauchy problem; Nonlinear evolution equation; Dispersive equation; Well-posedness; Sobolev space; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herr, S. (2006). Well-posedness results for dispersive equations with derivative nonlinearities. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-15985

Chicago Manual of Style (16th Edition):

Herr, Sebastian. “Well-posedness results for dispersive equations with derivative nonlinearities.” 2006. Doctoral Dissertation, Technische Universität Dortmund. Accessed October 01, 2020. http://dx.doi.org/10.17877/DE290R-15985.

MLA Handbook (7th Edition):

Herr, Sebastian. “Well-posedness results for dispersive equations with derivative nonlinearities.” 2006. Web. 01 Oct 2020.

Vancouver:

Herr S. Well-posedness results for dispersive equations with derivative nonlinearities. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2006. [cited 2020 Oct 01]. Available from: http://dx.doi.org/10.17877/DE290R-15985.

Council of Science Editors:

Herr S. Well-posedness results for dispersive equations with derivative nonlinearities. [Doctoral Dissertation]. Technische Universität Dortmund; 2006. Available from: http://dx.doi.org/10.17877/DE290R-15985

14. Kashlak, Adam B. A concentration inequality based statistical methodology for inference on covariance matrices and operators.

Degree: PhD, 2017, University of Cambridge

 In the modern era of high and infinite dimensional data, classical statistical methodology is often rendered inefficient and ineffective when confronted with such big data… (more)

Subjects/Keywords: Sparsity; Thresholding estimator; Procrustes; Functional Data; Talagrand's Inequality; Log Sobolev Inequality; Sub-Gaussian; Sub-Exponential; Classification; Clustering; Banach Space; Rademacher Symmetrization; Wasserstein Distance; High Dimensional Data

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kashlak, A. B. (2017). A concentration inequality based statistical methodology for inference on covariance matrices and operators. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267833

Chicago Manual of Style (16th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Doctoral Dissertation, University of Cambridge. Accessed October 01, 2020. https://www.repository.cam.ac.uk/handle/1810/267833.

MLA Handbook (7th Edition):

Kashlak, Adam B. “A concentration inequality based statistical methodology for inference on covariance matrices and operators.” 2017. Web. 01 Oct 2020.

Vancouver:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Oct 01]. Available from: https://www.repository.cam.ac.uk/handle/1810/267833.

Council of Science Editors:

Kashlak AB. A concentration inequality based statistical methodology for inference on covariance matrices and operators. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267833


University of Houston

15. Liu, Puchen 1979-. Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell.

Degree: PhD, Mathematics, 2013, University of Houston

 In this work, inspired by the reality in organisms and particularly the shape of axon of the neuron, new mathematical models of regulation of kinase… (more)

Subjects/Keywords: Kinase activity; Signalling; Flux; Gradient; Mixed Nonlinear Boundary Condition; Sobolev Space; Variational Problem; Weak Form; Steklov Eigenproblems; Representation of Solution; Galerkin approximation; Bifurcation Diagram

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, P. 1. (2013). Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/1207

Chicago Manual of Style (16th Edition):

Liu, Puchen 1979-. “Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell.” 2013. Doctoral Dissertation, University of Houston. Accessed October 01, 2020. http://hdl.handle.net/10657/1207.

MLA Handbook (7th Edition):

Liu, Puchen 1979-. “Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell.” 2013. Web. 01 Oct 2020.

Vancouver:

Liu P1. Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell. [Internet] [Doctoral dissertation]. University of Houston; 2013. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/10657/1207.

Council of Science Editors:

Liu P1. Solutions of Equations for the Regulation of Kinase Activity in a Finite Cylindrical Cell. [Doctoral Dissertation]. University of Houston; 2013. Available from: http://hdl.handle.net/10657/1207

16. Svensson, Hanna. Radiella vikter i Rn och lokala dimensioner.

Degree: The Institute of Technology, 2014, Linköping UniversityLinköping University

Kapaciteter kan vara till stor nytta, bland annat då partiella differentialekvationer ska lösas. Kapaciteter är dock i många fall väldigt svåra att beräkna exakt,… (more)

Subjects/Keywords: Admissible weight; annulus; ball; capacity; doubling measure; exponent sets; measure; Poincaré inequality; Sobolev space; weight.; Admissibel vikt; dubblerande mått; exponentmängder; kapacitet; klot; mått; Poincarés olikhet; ringar; sobolevrum; vikt.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Svensson, H. (2014). Radiella vikter i Rn och lokala dimensioner. (Thesis). Linköping UniversityLinköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107173

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Svensson, Hanna. “Radiella vikter i Rn och lokala dimensioner.” 2014. Thesis, Linköping UniversityLinköping University. Accessed October 01, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107173.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Svensson, Hanna. “Radiella vikter i Rn och lokala dimensioner.” 2014. Web. 01 Oct 2020.

Vancouver:

Svensson H. Radiella vikter i Rn och lokala dimensioner. [Internet] [Thesis]. Linköping UniversityLinköping University; 2014. [cited 2020 Oct 01]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107173.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Svensson H. Radiella vikter i Rn och lokala dimensioner. [Thesis]. Linköping UniversityLinköping University; 2014. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107173

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

17. Jennifer Gorsky. On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>.

Degree: Mathematics, 2004, University of Notre Dame

  We shall consider the periodic Cauchy problem for a modified Camassa-Holm (mCH) equation. We begin by proving well-posedness in Bourgain spaces for sufficiently small… (more)

Subjects/Keywords: KdV equation; Camassa-Holm equation; well-posedness; analyticity; Sobolev space; initial value problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gorsky, J. (2004). On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/0g354f1842q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gorsky, Jennifer. “On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>.” 2004. Thesis, University of Notre Dame. Accessed October 01, 2020. https://curate.nd.edu/show/0g354f1842q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gorsky, Jennifer. “On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>.” 2004. Web. 01 Oct 2020.

Vancouver:

Gorsky J. On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>. [Internet] [Thesis]. University of Notre Dame; 2004. [cited 2020 Oct 01]. Available from: https://curate.nd.edu/show/0g354f1842q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gorsky J. On the Cauchy Problem for a KdV-Type Equation on the Circle</h1>. [Thesis]. University of Notre Dame; 2004. Available from: https://curate.nd.edu/show/0g354f1842q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

18. Katelyn Jean Grayshan. Analysis of a Family of Shallow Water Waves</h1>.

Degree: Mathematics, 2012, University of Notre Dame

  We study a family of shallow water wave equations called the b-family equation. Known for having multi-peakon solutions, this family includes the Camassa-Holm equation… (more)

Subjects/Keywords: peakon; continuity; Cauchy problem; sobolev space; b-family equation; initial value problem; soliton; well-posedness; partial differential equations; data-to-solution map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grayshan, K. J. (2012). Analysis of a Family of Shallow Water Waves</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/w089280472x

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grayshan, Katelyn Jean. “Analysis of a Family of Shallow Water Waves</h1>.” 2012. Thesis, University of Notre Dame. Accessed October 01, 2020. https://curate.nd.edu/show/w089280472x.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grayshan, Katelyn Jean. “Analysis of a Family of Shallow Water Waves</h1>.” 2012. Web. 01 Oct 2020.

Vancouver:

Grayshan KJ. Analysis of a Family of Shallow Water Waves</h1>. [Internet] [Thesis]. University of Notre Dame; 2012. [cited 2020 Oct 01]. Available from: https://curate.nd.edu/show/w089280472x.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grayshan KJ. Analysis of a Family of Shallow Water Waves</h1>. [Thesis]. University of Notre Dame; 2012. Available from: https://curate.nd.edu/show/w089280472x

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

19. Gerasimov, T. The clamped elastic grid, a fourth order equation on a domain with corner.

Degree: 2009, Delft University of Technology

Subjects/Keywords: nonisotropic; fourth order PDE; domain with corner; clamped grid; weighted Sobolev space; regularity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gerasimov, T. (2009). The clamped elastic grid, a fourth order equation on a domain with corner. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3

Chicago Manual of Style (16th Edition):

Gerasimov, T. “The clamped elastic grid, a fourth order equation on a domain with corner.” 2009. Doctoral Dissertation, Delft University of Technology. Accessed October 01, 2020. http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3.

MLA Handbook (7th Edition):

Gerasimov, T. “The clamped elastic grid, a fourth order equation on a domain with corner.” 2009. Web. 01 Oct 2020.

Vancouver:

Gerasimov T. The clamped elastic grid, a fourth order equation on a domain with corner. [Internet] [Doctoral dissertation]. Delft University of Technology; 2009. [cited 2020 Oct 01]. Available from: http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3.

Council of Science Editors:

Gerasimov T. The clamped elastic grid, a fourth order equation on a domain with corner. [Doctoral Dissertation]. Delft University of Technology; 2009. Available from: http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; urn:NBN:nl:ui:24-uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3 ; http://resolver.tudelft.nl/uuid:d229c59f-c03f-4907-b9e8-67b83b619ac3


University of North Texas

20. Garza, Javier, 1965-. Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints.

Degree: 1994, University of North Texas

 The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the… (more)

Subjects/Keywords: Sobolev space; nonlinear constraints; mathematics; Mathematical optimization.; Method of steepest descent (Numerical analysis)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garza, Javier, 1. (1994). Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278362/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garza, Javier, 1965-. “Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints.” 1994. Thesis, University of North Texas. Accessed October 01, 2020. https://digital.library.unt.edu/ark:/67531/metadc278362/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garza, Javier, 1965-. “Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints.” 1994. Web. 01 Oct 2020.

Vancouver:

Garza, Javier 1. Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints. [Internet] [Thesis]. University of North Texas; 1994. [cited 2020 Oct 01]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278362/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garza, Javier 1. Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints. [Thesis]. University of North Texas; 1994. Available from: https://digital.library.unt.edu/ark:/67531/metadc278362/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

21. Ho, Phuoc L. UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES.

Degree: 2010, University of Kentucky

 We establish the upper bounds for the difference between the first two eigenvalues of the relative and absolute eigenvalue problems. Relative and absolute boundary conditions… (more)

Subjects/Keywords: gap estimate; Hodge Laplacian; Sobolev space; deRham cohomology; relative eigenvalues; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ho, P. L. (2010). UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/119

Chicago Manual of Style (16th Edition):

Ho, Phuoc L. “UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES.” 2010. Doctoral Dissertation, University of Kentucky. Accessed October 01, 2020. https://uknowledge.uky.edu/gradschool_diss/119.

MLA Handbook (7th Edition):

Ho, Phuoc L. “UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES.” 2010. Web. 01 Oct 2020.

Vancouver:

Ho PL. UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES. [Internet] [Doctoral dissertation]. University of Kentucky; 2010. [cited 2020 Oct 01]. Available from: https://uknowledge.uky.edu/gradschool_diss/119.

Council of Science Editors:

Ho PL. UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES. [Doctoral Dissertation]. University of Kentucky; 2010. Available from: https://uknowledge.uky.edu/gradschool_diss/119


Université Catholique de Louvain

22. Van Schaftingen, Jean. Symmetrizations,symmetry of critical points andL1 estimates.

Degree: 2005, Université Catholique de Louvain

 The first part of this thesis is devoted to symmetrizations. Symmetrizations are tranformations of functions that preserve many properties of functions and enhance their symmetry.… (more)

Subjects/Keywords: Espace de Sobolev; Isoperimetric inequalities; Regularity; Sobolev space; Anisotropic symmetrization; Polarization; Symmetrization; Inégalités isopérimétriques; Symétrisation anisotrope; Théorèmes de minimax; Polarisation; Régularité; Symétrisation; Minimax theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Schaftingen, J. (2005). Symmetrizations,symmetry of critical points andL1 estimates. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/5349

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Van Schaftingen, Jean. “Symmetrizations,symmetry of critical points andL1 estimates.” 2005. Thesis, Université Catholique de Louvain. Accessed October 01, 2020. http://hdl.handle.net/2078.1/5349.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Van Schaftingen, Jean. “Symmetrizations,symmetry of critical points andL1 estimates.” 2005. Web. 01 Oct 2020.

Vancouver:

Van Schaftingen J. Symmetrizations,symmetry of critical points andL1 estimates. [Internet] [Thesis]. Université Catholique de Louvain; 2005. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2078.1/5349.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Van Schaftingen J. Symmetrizations,symmetry of critical points andL1 estimates. [Thesis]. Université Catholique de Louvain; 2005. Available from: http://hdl.handle.net/2078.1/5349

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

23. Lindemulder, N. Weighted Function Spaces with Applications to Boundary Value Problems.

Degree: 2019, Delft University of Technology

 This thesis is concerned with the maximal regularity problem for parabolic boundary value problems with inhomogeneous boundary conditions in the setting of weighted function spaces… (more)

Subjects/Keywords: anisotropic; Banach space-valued; Bessel potential; elliptic boundary value problem; intersection space; maximal regularity; parabolic boundary value problem; Sobolev; Triebel-Lizorkin

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lindemulder, N. (2019). Weighted Function Spaces with Applications to Boundary Value Problems. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; 10.4233/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:isbn:978-94-028-1493-4 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2

Chicago Manual of Style (16th Edition):

Lindemulder, N. “Weighted Function Spaces with Applications to Boundary Value Problems.” 2019. Doctoral Dissertation, Delft University of Technology. Accessed October 01, 2020. http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; 10.4233/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:isbn:978-94-028-1493-4 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2.

MLA Handbook (7th Edition):

Lindemulder, N. “Weighted Function Spaces with Applications to Boundary Value Problems.” 2019. Web. 01 Oct 2020.

Vancouver:

Lindemulder N. Weighted Function Spaces with Applications to Boundary Value Problems. [Internet] [Doctoral dissertation]. Delft University of Technology; 2019. [cited 2020 Oct 01]. Available from: http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; 10.4233/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:isbn:978-94-028-1493-4 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2.

Council of Science Editors:

Lindemulder N. Weighted Function Spaces with Applications to Boundary Value Problems. [Doctoral Dissertation]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; 10.4233/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; urn:isbn:978-94-028-1493-4 ; urn:NBN:nl:ui:24-uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2 ; http://resolver.tudelft.nl/uuid:ac9f0f74-31d5-46d8-abf3-68c4f1b356c2

24. Beasley, Craig J. (Craig Jackson). Finite Element Solutions to Nonlinear Partial Differential Equations.

Degree: 1981, North Texas State University

 This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest… (more)

Subjects/Keywords: finite element solutions; partial differential equations; Sobolev space setting; Hilbert space setting; Differential equations, Partial  – Numerical solutions.; Finite element method.; Hilbert space.; Burgers equation.; Navier-Stokes equations.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beasley, C. J. (. J. (1981). Finite Element Solutions to Nonlinear Partial Differential Equations. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331330/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beasley, Craig J (Craig Jackson). “Finite Element Solutions to Nonlinear Partial Differential Equations.” 1981. Thesis, North Texas State University. Accessed October 01, 2020. https://digital.library.unt.edu/ark:/67531/metadc331330/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beasley, Craig J (Craig Jackson). “Finite Element Solutions to Nonlinear Partial Differential Equations.” 1981. Web. 01 Oct 2020.

Vancouver:

Beasley CJ(J. Finite Element Solutions to Nonlinear Partial Differential Equations. [Internet] [Thesis]. North Texas State University; 1981. [cited 2020 Oct 01]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331330/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beasley CJ(J. Finite Element Solutions to Nonlinear Partial Differential Equations. [Thesis]. North Texas State University; 1981. Available from: https://digital.library.unt.edu/ark:/67531/metadc331330/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

25. Zhao, Mingyu. Smoothing estimates for non commutative spaces.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 In the first part of this thesis, we follow Varopoulos's perspective to establish the noncommutaive Sobolev inequaties (namely, Hardy-Littlewood-Sobolev inequalites), and extend the Sobolev embedding… (more)

Subjects/Keywords: harmonic analysis; Hardy-Littlewood-Sobolev inequalities; Functional analysis; Operator space; Operator algebras; non-commutaive $L_p$ spaces

…estimate is called Hardy-Littlewood-Sobolev inequality, proved by Hardy, Littlewood [HL28… …x5D;, [HL30] and Sobolev [Sob38], dating back to 1920’s. In the… …between heat kernel estimates and Sobolev inequality in a more abstract context. Indeed… …Varopoulos proved, given a measure space (Ω, µ), Tt is a symmetric Markovian semigroup… …x5B;JM10] predict the Sobolev embedding results based on the Varopoulos dimension on… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, M. (2018). Smoothing estimates for non commutative spaces. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101570

Chicago Manual of Style (16th Edition):

Zhao, Mingyu. “Smoothing estimates for non commutative spaces.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 01, 2020. http://hdl.handle.net/2142/101570.

MLA Handbook (7th Edition):

Zhao, Mingyu. “Smoothing estimates for non commutative spaces.” 2018. Web. 01 Oct 2020.

Vancouver:

Zhao M. Smoothing estimates for non commutative spaces. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/2142/101570.

Council of Science Editors:

Zhao M. Smoothing estimates for non commutative spaces. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101570


Linköping University

26. Karlsson, John. Lebesgue points, Hölder continuity and Sobolev functions.

Degree: Mathematics, 2009, Linköping University

  This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions,… (more)

Subjects/Keywords: Lebesgue point; Hausdorff dimension; Hausdorff measure; Hölder continuity; Maximal function; Poincaré inequality; Sobolev space; Uniform continuity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karlsson, J. (2009). Lebesgue points, Hölder continuity and Sobolev functions. (Thesis). Linköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Karlsson, John. “Lebesgue points, Hölder continuity and Sobolev functions.” 2009. Thesis, Linköping University. Accessed October 01, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Karlsson, John. “Lebesgue points, Hölder continuity and Sobolev functions.” 2009. Web. 01 Oct 2020.

Vancouver:

Karlsson J. Lebesgue points, Hölder continuity and Sobolev functions. [Internet] [Thesis]. Linköping University; 2009. [cited 2020 Oct 01]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Karlsson J. Lebesgue points, Hölder continuity and Sobolev functions. [Thesis]. Linköping University; 2009. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

27. Charron, Philippe. Théorème de Pleijel pour l'oscillateur harmonique quantique.

Degree: 2016, Université de Montréal

Subjects/Keywords: Oscillateur harmonique quantique; Pleijel; Domaine nodal; Faber-Krahn; Fonction propre; Conditions de Dirichlet; Espace de Sobolev; Quantum harmonic oscillator; Nodal domain; Eigenfunction; Dirichlet boundary conditions; Sobolev space; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Charron, P. (2016). Théorème de Pleijel pour l'oscillateur harmonique quantique. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/13442

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Charron, Philippe. “Théorème de Pleijel pour l'oscillateur harmonique quantique.” 2016. Thesis, Université de Montréal. Accessed October 01, 2020. http://hdl.handle.net/1866/13442.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Charron, Philippe. “Théorème de Pleijel pour l'oscillateur harmonique quantique.” 2016. Web. 01 Oct 2020.

Vancouver:

Charron P. Théorème de Pleijel pour l'oscillateur harmonique quantique. [Internet] [Thesis]. Université de Montréal; 2016. [cited 2020 Oct 01]. Available from: http://hdl.handle.net/1866/13442.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Charron P. Théorème de Pleijel pour l'oscillateur harmonique quantique. [Thesis]. Université de Montréal; 2016. Available from: http://hdl.handle.net/1866/13442

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Marola, Niko. Regularity and Convergence Results in the Calculus of Variations on Metric Spaces.

Degree: 2007, Helsinki University of Technology

This dissertation studies regularity, convergence and stability properties for minimizers of variational integrals on metric measure spaces. The treatise consists of four articles in which… (more)

Subjects/Keywords: Caccioppoli inequality; doubling measure; Harnack convergence theorem; Harnack inequality; Moser iteration; Newtonian space; nonlinear eigenvalue problem; p-Dirichlet integral; p-Laplace equation; Poincaré inequality; quasiminimizer; Rayleigh quotient; Sobolev space; subminimizer; superminimizer; Caccioppolin epäyhtälö; epälineaarinen ominaisarvo-ongelma; Harnackin suppenemisperiaate; Harnackin epäyhtälö; kvasiminimoija; Moserin iteraatio; Newtonin avaruus; p-Dirichlet-integraali; p-Laplacen yhtälö; Poincarén epäyhtälö; Rayleigh-osamäärä; Sobolevin avaruus; subminimoija; superminimoija; tuplaava mitta

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marola, N. (2007). Regularity and Convergence Results in the Calculus of Variations on Metric Spaces. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2007/isbn9789512285976/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Marola, Niko. “Regularity and Convergence Results in the Calculus of Variations on Metric Spaces.” 2007. Thesis, Helsinki University of Technology. Accessed October 01, 2020. http://lib.tkk.fi/Diss/2007/isbn9789512285976/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Marola, Niko. “Regularity and Convergence Results in the Calculus of Variations on Metric Spaces.” 2007. Web. 01 Oct 2020.

Vancouver:

Marola N. Regularity and Convergence Results in the Calculus of Variations on Metric Spaces. [Internet] [Thesis]. Helsinki University of Technology; 2007. [cited 2020 Oct 01]. Available from: http://lib.tkk.fi/Diss/2007/isbn9789512285976/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marola N. Regularity and Convergence Results in the Calculus of Variations on Metric Spaces. [Thesis]. Helsinki University of Technology; 2007. Available from: http://lib.tkk.fi/Diss/2007/isbn9789512285976/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

29. Biglands, Adrian. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.

Degree: MS, Department of Mathematical and Statistical Sciences, 2009, University of Alberta

 We apply the so-called S1-equivariant degree to study the occurrence of {\it Hopf bifurcations} in a system of nonlinear ordinary differential equations with delay of… (more)

Subjects/Keywords: G-space, orthogonal G-representation, ODE, periodic function, locally uniformly asymptotically linear, asymptotic derivative at infinity, branch bifurcating from infinity, characteristic equation at infinity, characteristic root, isolated center at infinity, Sobolev space, Nemytsky operator, Hopf bifurcation from infinity, auxiliary function, Brouwer degree, measure of non-compactness, compact operator,compact field, S^1-equivariant degree, crossing numbers.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Biglands, A. (2009). Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/cft848q762

Chicago Manual of Style (16th Edition):

Biglands, Adrian. “Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.” 2009. Masters Thesis, University of Alberta. Accessed October 01, 2020. https://era.library.ualberta.ca/files/cft848q762.

MLA Handbook (7th Edition):

Biglands, Adrian. “Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay.” 2009. Web. 01 Oct 2020.

Vancouver:

Biglands A. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. [Internet] [Masters thesis]. University of Alberta; 2009. [cited 2020 Oct 01]. Available from: https://era.library.ualberta.ca/files/cft848q762.

Council of Science Editors:

Biglands A. Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay. [Masters Thesis]. University of Alberta; 2009. Available from: https://era.library.ualberta.ca/files/cft848q762

30. Estecahandy, Elodie. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.

Degree: Docteur es, Mathématiques appliquées, 2013, Pau

La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un… (more)

Subjects/Keywords: Interaction fluide-solide; Problème de diffraction; Fréquence de Jones; Inégalité de Gärding; Alternative de Fredholm; Espace de Sobolev à poids; Méthode de Galerkin discontinue; Méthode élément fini; Raffinement hp; Effet de pollution; Arêtes de frontière courbes; Factorisation LU; Différentiabilité au sens de Fréchet; Dérivée de domaine; Frontière Lipschitzienne; Théorème des fonctions implicites; Méthode de Newton; Régularisation de Tikhonov; Domaine étoilé; B-splines quadratiques; Fluid-solid interaction; Scattering problem; Jones frequency; Gärding's inequality; Fredholm alternative; Weighted Sobolev space; Discontinuous Galerkin method; Finite element method; Hp-refinement,; Pollution effect; Curved boundary edges; LU factorization; Fréchet differentiability; Domain derivative; Lipschitz boundary; Implicit function theorem; Newton method; Tikhonov regularization; Star domain; Quadratic B-splines.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Estecahandy, E. (2013). Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2013PAUU3022

Chicago Manual of Style (16th Edition):

Estecahandy, Elodie. “Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.” 2013. Doctoral Dissertation, Pau. Accessed October 01, 2020. http://www.theses.fr/2013PAUU3022.

MLA Handbook (7th Edition):

Estecahandy, Elodie. “Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.” 2013. Web. 01 Oct 2020.

Vancouver:

Estecahandy E. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. [Internet] [Doctoral dissertation]. Pau; 2013. [cited 2020 Oct 01]. Available from: http://www.theses.fr/2013PAUU3022.

Council of Science Editors:

Estecahandy E. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. [Doctoral Dissertation]. Pau; 2013. Available from: http://www.theses.fr/2013PAUU3022

[1] [2]

.