Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Selmer Group)`

.
Showing records 1 – 7 of
7 total matches.

▼ Search Limiters

University of Georgia

1. Donnelly, Stephen Robert. Finding elements of given order in Tate-Shafarevich groups of elliptic curves.

Degree: 2014, University of Georgia

URL: http://hdl.handle.net/10724/21025

► The Tate-Shafarevich *group* of an elliptic curve over a number field K measures the obstruction to determing the K-rational points by the standard method, which…
(more)

Subjects/Keywords: Algebraic geometry; Arithmetic geometry; Elliptic curves,Tate-Shafarevich group; Descent; Selmer groups; Mordell-Weil group

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Donnelly, S. R. (2014). Finding elements of given order in Tate-Shafarevich groups of elliptic curves. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/21025

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Donnelly, Stephen Robert. “Finding elements of given order in Tate-Shafarevich groups of elliptic curves.” 2014. Thesis, University of Georgia. Accessed March 07, 2021. http://hdl.handle.net/10724/21025.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Donnelly, Stephen Robert. “Finding elements of given order in Tate-Shafarevich groups of elliptic curves.” 2014. Web. 07 Mar 2021.

Vancouver:

Donnelly SR. Finding elements of given order in Tate-Shafarevich groups of elliptic curves. [Internet] [Thesis]. University of Georgia; 2014. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10724/21025.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Donnelly SR. Finding elements of given order in Tate-Shafarevich groups of elliptic curves. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/21025

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

2. Berger, Tobias Theodor. An Eisenstein ideal for imaginary quadratic fields.

Degree: PhD, Pure Sciences, 2005, University of Michigan

URL: http://hdl.handle.net/2027.42/125022

► For certain algebraic Hecke characters chi of an imaginary quadratic field F we define an Eisenstein ideal in a Hecke algebra acting on cuspidal automorphic…
(more)

Subjects/Keywords: Arithmetic Group Cohomology; Automorphic Forms; Eisenstein Ideal; Imaginary Quadratic Fields; Selmer Groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Berger, T. T. (2005). An Eisenstein ideal for imaginary quadratic fields. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/125022

Chicago Manual of Style (16^{th} Edition):

Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Doctoral Dissertation, University of Michigan. Accessed March 07, 2021. http://hdl.handle.net/2027.42/125022.

MLA Handbook (7^{th} Edition):

Berger, Tobias Theodor. “An Eisenstein ideal for imaginary quadratic fields.” 2005. Web. 07 Mar 2021.

Vancouver:

Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Internet] [Doctoral dissertation]. University of Michigan; 2005. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2027.42/125022.

Council of Science Editors:

Berger TT. An Eisenstein ideal for imaginary quadratic fields. [Doctoral Dissertation]. University of Michigan; 2005. Available from: http://hdl.handle.net/2027.42/125022

3.
DAO VAN THINH.
AVERAGE SIZE OF 2-*SELMER* GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS.

Degree: 2018, National University of Singapore

URL: http://scholarbank.nus.edu.sg/handle/10635/151889

Subjects/Keywords: Hyperelliptic curve; Selmer group; Jacobian variety; Vinberg invariant theory; Hitchin fibration; function field

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

THINH, D. V. (2018). AVERAGE SIZE OF 2-SELMER GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/151889

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

THINH, DAO VAN. “AVERAGE SIZE OF 2-SELMER GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS.” 2018. Thesis, National University of Singapore. Accessed March 07, 2021. http://scholarbank.nus.edu.sg/handle/10635/151889.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

THINH, DAO VAN. “AVERAGE SIZE OF 2-SELMER GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS.” 2018. Web. 07 Mar 2021.

Vancouver:

THINH DV. AVERAGE SIZE OF 2-SELMER GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS. [Internet] [Thesis]. National University of Singapore; 2018. [cited 2021 Mar 07]. Available from: http://scholarbank.nus.edu.sg/handle/10635/151889.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

THINH DV. AVERAGE SIZE OF 2-SELMER GROUPS OF JACOBIANS OF HYPERELLIPTIC CURVES OVER FUNCTION FIELDS. [Thesis]. National University of Singapore; 2018. Available from: http://scholarbank.nus.edu.sg/handle/10635/151889

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

4.
Klosin, Krzysztof.
Congruences among automorphic forms on the unitary *group* U(2,2).

Degree: PhD, Pure Sciences, 2006, University of Michigan

URL: http://hdl.handle.net/2027.42/126079

► Let k be a positive integer divisible by 4, ℓ > k an odd prime, and f a normalized elliptic cuspidal eigenform of weight k…
(more)

Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079

Chicago Manual of Style (16^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 07, 2021. http://hdl.handle.net/2027.42/126079.

MLA Handbook (7^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 07 Mar 2021.

Vancouver:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2027.42/126079.

Council of Science Editors:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079

5. van Beek, Monique. Computing the Cassels-Tate pairing.

Degree: PhD, 2015, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/252852https://www.repository.cam.ac.uk/bitstream/1810/252852/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/3/thesis%20%282%29.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/4/thesis%20%282%29.pdf.jpg

Subjects/Keywords: Cassels-Tate pairing; elliptic curves; p-isogeny; descent; Selmer group; norm equations for pure cubic extensions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

van Beek, M. (2015). Computing the Cassels-Tate pairing. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/252852https://www.repository.cam.ac.uk/bitstream/1810/252852/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/3/thesis%20%282%29.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/4/thesis%20%282%29.pdf.jpg

Chicago Manual of Style (16^{th} Edition):

van Beek, Monique. “Computing the Cassels-Tate pairing.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://www.repository.cam.ac.uk/handle/1810/252852https://www.repository.cam.ac.uk/bitstream/1810/252852/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/3/thesis%20%282%29.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/4/thesis%20%282%29.pdf.jpg.

MLA Handbook (7^{th} Edition):

van Beek, Monique. “Computing the Cassels-Tate pairing.” 2015. Web. 07 Mar 2021.

Vancouver:

van Beek M. Computing the Cassels-Tate pairing. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://www.repository.cam.ac.uk/handle/1810/252852https://www.repository.cam.ac.uk/bitstream/1810/252852/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/3/thesis%20%282%29.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/4/thesis%20%282%29.pdf.jpg.

Council of Science Editors:

van Beek M. Computing the Cassels-Tate pairing. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/252852https://www.repository.cam.ac.uk/bitstream/1810/252852/2/license.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/3/thesis%20%282%29.pdf.txt ; https://www.repository.cam.ac.uk/bitstream/1810/252852/4/thesis%20%282%29.pdf.jpg

6. van Beek, Monique. Computing the Cassels-Tate pairing.

Degree: PhD, 2015, University of Cambridge

URL: https://doi.org/10.17863/CAM.16242 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675911

Subjects/Keywords: 510; Cassels-Tate pairing; elliptic curves; p-isogeny; descent; Selmer group; norm equations for pure cubic extensions

…to calculate the *Selmer* *group* S(n) (E/K), which consists of all n… …Ê → E such that φ ◦ φ̂ = [n], the multiplication-by-n map. The *Selmer* *group* S… …in MAGMA [Don]. For p = 3 or 5,
the pairing on the p-*Selmer* *group* of an elliptic… …Definition 2.2.5. Let φ : E/K → Ê/K be an isogeny. The φ -*Selmer* *group* of E/K is the subgroup of
H… …x29; = ker WC(E/K) →
∏ WC(E/Kv )
.
v∈MK
Thus the *Selmer* *group* S(…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

van Beek, M. (2015). Computing the Cassels-Tate pairing. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.16242 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675911

Chicago Manual of Style (16^{th} Edition):

van Beek, Monique. “Computing the Cassels-Tate pairing.” 2015. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://doi.org/10.17863/CAM.16242 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675911.

MLA Handbook (7^{th} Edition):

van Beek, Monique. “Computing the Cassels-Tate pairing.” 2015. Web. 07 Mar 2021.

Vancouver:

van Beek M. Computing the Cassels-Tate pairing. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2021 Mar 07]. Available from: https://doi.org/10.17863/CAM.16242 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675911.

Council of Science Editors:

van Beek M. Computing the Cassels-Tate pairing. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://doi.org/10.17863/CAM.16242 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675911

Université de Montréal

7. Mokrani, Youcef. Generalizations of monsky matrices for elliptic curves in legendre form.

Degree: 2020, Université de Montréal

URL: http://hdl.handle.net/1866/24347

Subjects/Keywords: Courbes elliptiques; Matrices de Monsky; Nombres congruents; Nombres theta-congruents; 2-descente; Groupe de 2-Selmer; Théorie des nombres; Elliptic curves; Monsky matrices; Congruent numbers; Theta-congruent numbers; 2-descent; 2-Selmer group; Number theory; Mathematics / Mathématiques (UMI : 0405)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mokrani, Y. (2020). Generalizations of monsky matrices for elliptic curves in legendre form. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/24347

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mokrani, Youcef. “Generalizations of monsky matrices for elliptic curves in legendre form.” 2020. Thesis, Université de Montréal. Accessed March 07, 2021. http://hdl.handle.net/1866/24347.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mokrani, Youcef. “Generalizations of monsky matrices for elliptic curves in legendre form.” 2020. Web. 07 Mar 2021.

Vancouver:

Mokrani Y. Generalizations of monsky matrices for elliptic curves in legendre form. [Internet] [Thesis]. Université de Montréal; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1866/24347.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mokrani Y. Generalizations of monsky matrices for elliptic curves in legendre form. [Thesis]. Université de Montréal; 2020. Available from: http://hdl.handle.net/1866/24347

Not specified: Masters Thesis or Doctoral Dissertation