Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Schrodinger equation)`

.
Showing records 1 – 30 of
80 total matches.

Search Limiters

Dates

- 2016 – 2020 (19)
- 2011 – 2015 (31)
- 2006 – 2010 (21)

▼ Search Limiters

University of Illinois – Urbana-Champaign

1. Demirbas, Seckin. A study on certain periodic Schrödinger equations.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/87978

In the first part of this thesis we consider the cubic Schrödinger equation
iu_{t+Delta} u =+/-|u|^{2u}, x in T_{theta}^{2}, t∈ [-T,T],
u(x,0)=u_{0}(x) in H^{s}(T_{theta}^{2}).
T is the time of existence of the solutions and T_{theta}^{2} is the irrational torus given by R^{2}/theta_{1} Z * θ_{2} Z for theta_{1}, theta_{2} > 0 and theta_{1}/theta_{2} irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this Strichartz estimate, we obtain a local well-posedness result in H^{s} for s>131/416. We also use energy type estimates to control the H^{s} norm of the solution and obtain improved growth bounds for higher order Sobolev norms.
In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional Schrödinger equation:
iu_{t+}(-Delta)^{alpha} u =+/- |u|^{2u}, x in T, t in R,
u(x,0)=u_{0}(x) in H^{s}(T),
where alpha in (1/2,1). First, we prove a Strichartz type estimate for this equation. Using the arguments from Chapter 3, this estimate implies local well-posedness in H^{s} for s>(1-alpha)/2. However, we prove local well-posedness using direct X^(s,b) estimates. In addition, we show the existence of global-in-time infinite energy solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As an important consequence of this smoothing estimate, we prove that there is global well-posedness in H^{s} for s>(10*alpha+1)/(12).
Finally, for the fractional Schrödinger equation, we define an invariant probability measure mu on H^{s} for s<alpha-1/2, called a Gibbs measure. We define mu so that for any epsilon>0 there is a set Omega, a subset of H^{s}, such that mu(Omega^{c})<epsilon and the equation is globally well-posed for initial data in Omega. We achieve this by showing that for the initial data in Omega, the H^{s} norms of the solutions stay finite for all times. This fills the gap between the local well-posedness and the global well-posedness range in almost sure sense for (1-alpha)/2<alpha-1/2, i.e. alpha>2/3.
*Advisors/Committee Members: Tzirakis, Nikolaos (advisor), Erdogan, Burak (advisor), Junge, Marius (Committee Chair), Bronski, Jared C. (committee member).*

Subjects/Keywords: Periodic Schrodinger equation; Fractional Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Demirbas, S. (2015). A study on certain periodic Schrödinger equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/87978

Chicago Manual of Style (16^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 31, 2020. http://hdl.handle.net/2142/87978.

MLA Handbook (7^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Web. 31 Oct 2020.

Vancouver:

Demirbas S. A study on certain periodic Schrödinger equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2142/87978.

Council of Science Editors:

Demirbas S. A study on certain periodic Schrödinger equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/87978

2. Godet, Nicolas. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.

Degree: Docteur es, Mathématiques - EM2C, 2012, Cergy-Pontoise

URL: http://www.theses.fr/2012CERG0619

►

Cette thèse porte sur l'étude des phénomènes d'explosion pour certaines équations aux dérivées partielles dispersives et plus particulièrement pour l'équation de *Schrodinger* non linéaire. Ces…
(more)

Subjects/Keywords: Edp; Équation de Schrodinger; Explosion; Pde; Schrodinger equation; Blow up

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Godet, N. (2012). Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. (Doctoral Dissertation). Cergy-Pontoise. Retrieved from http://www.theses.fr/2012CERG0619

Chicago Manual of Style (16^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Doctoral Dissertation, Cergy-Pontoise. Accessed October 31, 2020. http://www.theses.fr/2012CERG0619.

MLA Handbook (7^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Web. 31 Oct 2020.

Vancouver:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Internet] [Doctoral dissertation]. Cergy-Pontoise; 2012. [cited 2020 Oct 31]. Available from: http://www.theses.fr/2012CERG0619.

Council of Science Editors:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Doctoral Dissertation]. Cergy-Pontoise; 2012. Available from: http://www.theses.fr/2012CERG0619

University of Oklahoma

3.
Adekoya, Oreoluwa.
PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR *SCHRODINGER* * EQUATION*.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/319611

► We study the existence, uniqueness and stability of solutions to the initial-value problem for the periodic dispersion-managed nonlinear Schrödinger (DMNLS) *equation*, an *equation* that models…
(more)

Subjects/Keywords: Dispersion-managed; Dispersion; Nonlinear; Schrodinger; Periodic dispersion managed nonlinear schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Adekoya, O. (2019). PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319611

Chicago Manual of Style (16^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed October 31, 2020. http://hdl.handle.net/11244/319611.

MLA Handbook (7^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Web. 31 Oct 2020.

Vancouver:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/11244/319611.

Council of Science Editors:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/319611

University of Ontario Institute of Technology

4. Metherall, Brady. A new method of modelling tuneable lasers with functional composition.

Degree: 2019, University of Ontario Institute of Technology

URL: http://hdl.handle.net/10155/1073

► A new nonlinear model is proposed for tuneable lasers. Using the generalized nonlinear *Schrodinger* *equation* as a starting point, expressions for the transformations undergone by…
(more)

Subjects/Keywords: Tuneable lasers; Nonlinear Schrodinger equation; Laser cavity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Metherall, B. (2019). A new method of modelling tuneable lasers with functional composition. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/1073

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Thesis, University of Ontario Institute of Technology. Accessed October 31, 2020. http://hdl.handle.net/10155/1073.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Web. 31 Oct 2020.

Vancouver:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Internet] [Thesis]. University of Ontario Institute of Technology; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10155/1073.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Thesis]. University of Ontario Institute of Technology; 2019. Available from: http://hdl.handle.net/10155/1073

Not specified: Masters Thesis or Doctoral Dissertation

University of Kentucky

5.
Music, Michael.
Inverse Scattering For The Zero-Energy Novikov-Veselov * Equation*.

Degree: 2016, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/40

► For certain initial data, we solve the Novikov-Veselov *equation* by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes…
(more)

Subjects/Keywords: inverse scattering; Novikov-Veselov equation; Schrodinger equation; Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Music, M. (2016). Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/40

Chicago Manual of Style (16^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Doctoral Dissertation, University of Kentucky. Accessed October 31, 2020. https://uknowledge.uky.edu/math_etds/40.

MLA Handbook (7^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Web. 31 Oct 2020.

Vancouver:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2020 Oct 31]. Available from: https://uknowledge.uky.edu/math_etds/40.

Council of Science Editors:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/40

University of Illinois – Urbana-Champaign

6.
Toprak, Ebru.
Global dynamics of *Schrodinger* and Dirac equations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101665

► In this document, we study the linear Schrödinger operator and linear massive Dirac operator in the L^{1} → L^∞ settings. In Chapter~I, we focus on the…
(more)

Subjects/Keywords: Schrodinger equation; Dirac equation; dispersive estimate; threshold-energy obstruction

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Toprak, E. (2018). Global dynamics of Schrodinger and Dirac equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101665

Chicago Manual of Style (16^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 31, 2020. http://hdl.handle.net/2142/101665.

MLA Handbook (7^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Web. 31 Oct 2020.

Vancouver:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2142/101665.

Council of Science Editors:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101665

NSYSU

7. Lee, Yuanhan. Block elimination algorithms for bordered linear systems and its applications.

Degree: Master, Applied Mathematics, 2013, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

► Many applications need to solve a number of large bordered linear systems such as the prediction and correction processes in continuation method.If the original linear…
(more)

Subjects/Keywords: Block elimination algorithm; bordered linear system; nonlinear Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, Y. (2013). Block elimination algorithms for bordered linear systems and its applications. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Thesis, NSYSU. Accessed October 31, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Web. 31 Oct 2020.

Vancouver:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Oct 31]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

University of California – San Diego

8. Pizzo, Nicholas Edward. Properties of nonlinear and breaking deep-water surface waves.

Degree: Oceanography, 2015, University of California – San Diego

URL: http://www.escholarship.org/uc/item/0g45s3j6

► In this thesis we study nonlinear and breaking deep-water surface waves. First, we consider the vorticity generated by an individual breaking wave, drawing on classical…
(more)

Subjects/Keywords: Physical oceanography; Applied mathematics; Nonlinear Schrodinger Equation; Physical Oceanography; Wave breaking

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pizzo, N. E. (2015). Properties of nonlinear and breaking deep-water surface waves. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Thesis, University of California – San Diego. Accessed October 31, 2020. http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Web. 31 Oct 2020.

Vancouver:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

9.
Sohani, Vijay Kumar.
Nonlinear *schrodinger* *equation* and the twisted
laplacian; -.

Degree: Mathematical Sciences, 2013, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Subjects/Keywords: equation; Nonlinear; schrodinger; twisted laplacian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sohani, V. K. (2013). Nonlinear schrodinger equation and the twisted laplacian; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Thesis, INFLIBNET. Accessed October 31, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Web. 31 Oct 2020.

Vancouver:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Internet] [Thesis]. INFLIBNET; 2013. [cited 2020 Oct 31]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Thesis]. INFLIBNET; 2013. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Stellenbosch University

10. Wessels, Gert Jermia Cornelus. A numerical and analytical investigation into non-Hermitian Hamiltonians.

Degree: Mathematical Sciences, 2009, Stellenbosch University

URL: http://hdl.handle.net/10019.1/2894

►

Thesis (MSc (Physical and Mathematical Analysis)) – University of Stellenbosch, 2009.

In this thesis we aim to show that the Schr odinger *equation*, which is a…
(more)

Subjects/Keywords: Mathematics; Schrodinger equation; Perturbation (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wessels, G. J. C. (2009). A numerical and analytical investigation into non-Hermitian Hamiltonians. (Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Thesis, Stellenbosch University. Accessed October 31, 2020. http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Web. 31 Oct 2020.

Vancouver:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Internet] [Thesis]. Stellenbosch University; 2009. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Thesis]. Stellenbosch University; 2009. Available from: http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

Texas Tech University

11.
Walker, John David.
An investigation into the possibility of an integral solution to the radical *Schrodinger* *equation*.

Degree: Physics, 1964, Texas Tech University

URL: http://hdl.handle.net/2346/13431

Subjects/Keywords: Schrodinger equation; Scattering (Physics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Walker, J. D. (1964). An investigation into the possibility of an integral solution to the radical Schrodinger equation. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Thesis, Texas Tech University. Accessed October 31, 2020. http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Web. 31 Oct 2020.

Vancouver:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Internet] [Thesis]. Texas Tech University; 1964. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Thesis]. Texas Tech University; 1964. Available from: http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

University of Kansas

12. Claassen, Kyle Matthew. Stability of Periodic Waves in Nonlocal Dispersive Equations.

Degree: PhD, Mathematics, 2018, University of Kansas

URL: http://hdl.handle.net/1808/27876

► In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study the existence and stability of periodic waves in equations that…
(more)

Subjects/Keywords: Mathematics; Bidirectional Whitham models; Dispersive Equations; Fractional Nonlinear Schrodinger Equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Claassen, K. M. (2018). Stability of Periodic Waves in Nonlocal Dispersive Equations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27876

Chicago Manual of Style (16^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Doctoral Dissertation, University of Kansas. Accessed October 31, 2020. http://hdl.handle.net/1808/27876.

MLA Handbook (7^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Web. 31 Oct 2020.

Vancouver:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Internet] [Doctoral dissertation]. University of Kansas; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1808/27876.

Council of Science Editors:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Doctoral Dissertation]. University of Kansas; 2018. Available from: http://hdl.handle.net/1808/27876

University of New South Wales

13. Sun, Yang. Soliton dynamics in frequency-modulated lattices.

Degree: Physical, Environmental & Mathematical Sciences, 2014, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

► Currently, experimental and theoretical studies of solitons have been conducted in the context of several areas of science, from applied mathematics and physics to chemistry…
(more)

Subjects/Keywords: nonlinear Schrodinger equation; soliton; periodic potential; parametric resonance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sun, Y. (2014). Soliton dynamics in frequency-modulated lattices. (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Masters Thesis, University of New South Wales. Accessed October 31, 2020. http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Web. 31 Oct 2020.

Vancouver:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Internet] [Masters thesis]. University of New South Wales; 2014. [cited 2020 Oct 31]. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

Council of Science Editors:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Masters Thesis]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

The Ohio State University

14.
Lee, Jong-eao John.
The inverse spectral solution, modulation theory and
linearized stability analysis of N-phase, quasi-periodic solutions
of the nonlinear *Schrodinger* * equation*.

Degree: PhD, Graduate School, 1986, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed October 31, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 31 Oct 2020.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2020 Oct 31]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

University of Cincinnati

15.
Hill, Thomas.
Dispersive Estimates of *Schrodinger* and *Schrodinger*-Like
Equations in One Dimension.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2020, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

► This dissertation will discuss one-dimensional dispersive estimates of the *Schrodinger* *equation* and a fourth-order *Schrodinger*-like *equation*.We prove dispersive estimates for the *Schrodinger* *equation* with Hamiltonians…
(more)

Subjects/Keywords: Mathematics; Schrodinger equation; dispersive estimates; fourth-order; Wiener algebra; one-dimensional

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hill, T. (2020). Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

Chicago Manual of Style (16^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Doctoral Dissertation, University of Cincinnati. Accessed October 31, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

MLA Handbook (7^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Web. 31 Oct 2020.

Vancouver:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Internet] [Doctoral dissertation]. University of Cincinnati; 2020. [cited 2020 Oct 31]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

Council of Science Editors:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Doctoral Dissertation]. University of Cincinnati; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

Universidade Estadual de Campinas

16.
Luciana Maria Mendonça Bragança.
O problema de Cauchy para um sistema de equações do tipo *Schrodinger* não linear de terceira ordem.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

URL: http://libdigi.unicamp.br/document/?code=vtls000417496

►

In this work we study the Cauchy problem associated to a system of coupled third-order nonlinear *Schrodinger* *equation*. We establish local well-posedness results for the…
(more)

Subjects/Keywords: Cauchy; Schrodinger; Nonlinear differential equtions; Equações diferenciais não-lineares; Cauchy problem; Problemas de; Equações de; Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bragança, L. M. M. (2007). O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Thesis, Universidade Estadual de Campinas. Accessed October 31, 2020. http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Web. 31 Oct 2020.

Vancouver:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2020 Oct 31]. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

San Jose State University

17. Salazar-Lazaro, Carlos Harold. Classical Models of the Spin 1/2 System.

Degree: MS, Physics and Astronomy, 2012, San Jose State University

URL: https://doi.org/10.31979/etd.k9bt-edx6 ; https://scholarworks.sjsu.edu/etd_theses/4251

► We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin 1/2 system. We…
(more)

Subjects/Keywords: Foucault Pendulum; Foundations of Quantum Mechanics; Lagrangians; Mathematical Physics; Quaternions; Schrodinger Pauli Equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Salazar-Lazaro, C. H. (2012). Classical Models of the Spin 1/2 System. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.k9bt-edx6 ; https://scholarworks.sjsu.edu/etd_theses/4251

Chicago Manual of Style (16^{th} Edition):

Salazar-Lazaro, Carlos Harold. “Classical Models of the Spin 1/2 System.” 2012. Masters Thesis, San Jose State University. Accessed October 31, 2020. https://doi.org/10.31979/etd.k9bt-edx6 ; https://scholarworks.sjsu.edu/etd_theses/4251.

MLA Handbook (7^{th} Edition):

Salazar-Lazaro, Carlos Harold. “Classical Models of the Spin 1/2 System.” 2012. Web. 31 Oct 2020.

Vancouver:

Salazar-Lazaro CH. Classical Models of the Spin 1/2 System. [Internet] [Masters thesis]. San Jose State University; 2012. [cited 2020 Oct 31]. Available from: https://doi.org/10.31979/etd.k9bt-edx6 ; https://scholarworks.sjsu.edu/etd_theses/4251.

Council of Science Editors:

Salazar-Lazaro CH. Classical Models of the Spin 1/2 System. [Masters Thesis]. San Jose State University; 2012. Available from: https://doi.org/10.31979/etd.k9bt-edx6 ; https://scholarworks.sjsu.edu/etd_theses/4251

Anna University

18. Ram Prasad, A V. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.

Degree: Information and Communication Engineering, 2014, Anna University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/27345

►

newlineOptical networks have a significant role to play in the present and newlinefuture global telecommunication networking scenario due to the increasing newlinedemand for larger transmission… (more)

Subjects/Keywords: Dense Wavelength Division Multiplexing; Four Wave Mixing; Non Linear Schrodinger Equation; Optical networks

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ram Prasad, A. V. (2014). Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. (Thesis). Anna University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/27345

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Thesis, Anna University. Accessed October 31, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ram Prasad, A V. “Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -.” 2014. Web. 31 Oct 2020.

Vancouver:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Internet] [Thesis]. Anna University; 2014. [cited 2020 Oct 31]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ram Prasad AV. Spectral efficiency maximization in Dwdm optical systems under the Impact of FWM; -. [Thesis]. Anna University; 2014. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/27345

Not specified: Masters Thesis or Doctoral Dissertation

New Jersey Institute of Technology

19.
Basarab, Casayndra H.
Hamiltonian bifurcations in *Schrodinger* trimers.

Degree: PhD, Mathematical Sciences, 2016, New Jersey Institute of Technology

URL: https://digitalcommons.njit.edu/dissertations/87

► The phase space of the three-mode discrete NLS in the nonlinear regime with periodic boundary conditions is investigated by reducing the degree of freedom…
(more)

Subjects/Keywords: Hamiltonian systems; Nonlinear dynamics; Nonlinear Schrodinger equation; Hamiltonian hopf bifurcation; Chaos; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Basarab, C. H. (2016). Hamiltonian bifurcations in Schrodinger trimers. (Doctoral Dissertation). New Jersey Institute of Technology. Retrieved from https://digitalcommons.njit.edu/dissertations/87

Chicago Manual of Style (16^{th} Edition):

Basarab, Casayndra H. “Hamiltonian bifurcations in Schrodinger trimers.” 2016. Doctoral Dissertation, New Jersey Institute of Technology. Accessed October 31, 2020. https://digitalcommons.njit.edu/dissertations/87.

MLA Handbook (7^{th} Edition):

Basarab, Casayndra H. “Hamiltonian bifurcations in Schrodinger trimers.” 2016. Web. 31 Oct 2020.

Vancouver:

Basarab CH. Hamiltonian bifurcations in Schrodinger trimers. [Internet] [Doctoral dissertation]. New Jersey Institute of Technology; 2016. [cited 2020 Oct 31]. Available from: https://digitalcommons.njit.edu/dissertations/87.

Council of Science Editors:

Basarab CH. Hamiltonian bifurcations in Schrodinger trimers. [Doctoral Dissertation]. New Jersey Institute of Technology; 2016. Available from: https://digitalcommons.njit.edu/dissertations/87

East Tennessee State University

20. Debrah, Duke A. Molecular Modeling of Dirhodium Complexes.

Degree: MS, Chemistry, 2014, East Tennessee State University

URL: https://dc.etsu.edu/etd/2426

► Dirhodium complexes such as carboxylates and carboxylamidates are very efficient metal catalysts used in the synthesis of pharmaceuticals and agrochemicals. Recent experimental work has…
(more)

Subjects/Keywords: Density Functional Theory; Dirhodium Complexes; Molecular Modeling; Basis Set; Hartree-Fock Procedure; Schrodinger Equation; Chemistry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Debrah, D. A. (2014). Molecular Modeling of Dirhodium Complexes. (Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/2426

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Debrah, Duke A. “Molecular Modeling of Dirhodium Complexes.” 2014. Thesis, East Tennessee State University. Accessed October 31, 2020. https://dc.etsu.edu/etd/2426.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Debrah, Duke A. “Molecular Modeling of Dirhodium Complexes.” 2014. Web. 31 Oct 2020.

Vancouver:

Debrah DA. Molecular Modeling of Dirhodium Complexes. [Internet] [Thesis]. East Tennessee State University; 2014. [cited 2020 Oct 31]. Available from: https://dc.etsu.edu/etd/2426.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Debrah DA. Molecular Modeling of Dirhodium Complexes. [Thesis]. East Tennessee State University; 2014. Available from: https://dc.etsu.edu/etd/2426

Not specified: Masters Thesis or Doctoral Dissertation

University of Colorado

21. Nixon, Sean David. Development and Applications of Soliton Perturbation Theory.

Degree: PhD, Applied Mathematics, 2011, University of Colorado

URL: https://scholar.colorado.edu/appm_gradetds/18

► This thesis examines the effects of small perturbation to soliton solutions of the nonlinear Schrödinger (NLS) *equation* on two fronts: the development of a…
(more)

Subjects/Keywords: Mode-locked lasers; Nonlinear Schrodinger equation; Nonlinear waves; Perturbation theory; Solitons; Applied Mathematics; Optics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nixon, S. D. (2011). Development and Applications of Soliton Perturbation Theory. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/18

Chicago Manual of Style (16^{th} Edition):

Nixon, Sean David. “Development and Applications of Soliton Perturbation Theory.” 2011. Doctoral Dissertation, University of Colorado. Accessed October 31, 2020. https://scholar.colorado.edu/appm_gradetds/18.

MLA Handbook (7^{th} Edition):

Nixon, Sean David. “Development and Applications of Soliton Perturbation Theory.” 2011. Web. 31 Oct 2020.

Vancouver:

Nixon SD. Development and Applications of Soliton Perturbation Theory. [Internet] [Doctoral dissertation]. University of Colorado; 2011. [cited 2020 Oct 31]. Available from: https://scholar.colorado.edu/appm_gradetds/18.

Council of Science Editors:

Nixon SD. Development and Applications of Soliton Perturbation Theory. [Doctoral Dissertation]. University of Colorado; 2011. Available from: https://scholar.colorado.edu/appm_gradetds/18

University of New Mexico

22. Dyachenko, Sergey. Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems.

Degree: Mathematics & Statistics, 2015, University of New Mexico

URL: http://hdl.handle.net/1928/25774

► Singularity formation is an inherent feature of equations in nonlinear physics, in many situations such as in self-focusing of light nonlinearity is essential part of…
(more)

Subjects/Keywords: nonlinear waves; nonlinear Schrodinger Equation; wave collapse; water waves; singularities; self focusing

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dyachenko, S. (2015). Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/25774

Chicago Manual of Style (16^{th} Edition):

Dyachenko, Sergey. “Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems.” 2015. Doctoral Dissertation, University of New Mexico. Accessed October 31, 2020. http://hdl.handle.net/1928/25774.

MLA Handbook (7^{th} Edition):

Dyachenko, Sergey. “Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems.” 2015. Web. 31 Oct 2020.

Vancouver:

Dyachenko S. Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems. [Internet] [Doctoral dissertation]. University of New Mexico; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1928/25774.

Council of Science Editors:

Dyachenko S. Strongly Nonlinear Phenomena and Singularities in Optical, Hydrodynamic and Biological Systems. [Doctoral Dissertation]. University of New Mexico; 2015. Available from: http://hdl.handle.net/1928/25774

23. Santosh,Kumar Pandey. Geometric Algebra and Einstein’s Electron.

Degree: Mathematics, 2010, Cochin University of Science and Technology

URL: http://dyuthi.cusat.ac.in/purl/3114

►

This thesis entitled Geometric algebra and einsteins electron: Deterministic field theories .The work in this thesis clarifies an important part of Koga’s theory.Koga also developed… (more)

Subjects/Keywords: Factorisation of the metric; Mendel sachs's derivation of quantum; Koga's general relativistic theory of the electron; Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pandey, S. (2010). Geometric Algebra and Einstein’s Electron. (Thesis). Cochin University of Science and Technology. Retrieved from http://dyuthi.cusat.ac.in/purl/3114

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pandey, Santosh,Kumar. “Geometric Algebra and Einstein’s Electron.” 2010. Thesis, Cochin University of Science and Technology. Accessed October 31, 2020. http://dyuthi.cusat.ac.in/purl/3114.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pandey, Santosh,Kumar. “Geometric Algebra and Einstein’s Electron.” 2010. Web. 31 Oct 2020.

Vancouver:

Pandey S. Geometric Algebra and Einstein’s Electron. [Internet] [Thesis]. Cochin University of Science and Technology; 2010. [cited 2020 Oct 31]. Available from: http://dyuthi.cusat.ac.in/purl/3114.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pandey S. Geometric Algebra and Einstein’s Electron. [Thesis]. Cochin University of Science and Technology; 2010. Available from: http://dyuthi.cusat.ac.in/purl/3114

Not specified: Masters Thesis or Doctoral Dissertation

24.
Yamazaki, Yohei.
Stability of line standing waves near the bifurcation point for nonlinear *Schrodinger* equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性.

Degree: 博士(理学), 2015, Kyoto University / 京都大学

URL: http://hdl.handle.net/2433/199077 ; http://dx.doi.org/10.14989/doctor.k18768

新制・課程博士

甲第18768号

理博第4026号

Subjects/Keywords: nonlinear Schrodinger equation; bifurcation; standing wave; transverse insatability

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yamazaki, Y. (2015). Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/199077 ; http://dx.doi.org/10.14989/doctor.k18768

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yamazaki, Yohei. “Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性.” 2015. Thesis, Kyoto University / 京都大学. Accessed October 31, 2020. http://hdl.handle.net/2433/199077 ; http://dx.doi.org/10.14989/doctor.k18768.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yamazaki, Yohei. “Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性.” 2015. Web. 31 Oct 2020.

Vancouver:

Yamazaki Y. Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性. [Internet] [Thesis]. Kyoto University / 京都大学; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2433/199077 ; http://dx.doi.org/10.14989/doctor.k18768.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yamazaki Y. Stability of line standing waves near the bifurcation point for nonlinear Schrodinger equations : 非線形シュレディンガー方程式に対する分岐点近傍での線状定在波の安定性. [Thesis]. Kyoto University / 京都大学; 2015. Available from: http://hdl.handle.net/2433/199077 ; http://dx.doi.org/10.14989/doctor.k18768

Not specified: Masters Thesis or Doctoral Dissertation

25.
Inui, Takahisa.
GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR *SCHRODINGER* *EQUATION* : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス.

Degree: 博士(理学), 2017, Kyoto University / 京都大学

URL: http://hdl.handle.net/2433/225377 ; http://dx.doi.org/10.14989/doctor.k20152

新制・課程博士

甲第20152号

理博第4237号

Subjects/Keywords: Global dynamics; orthogonal matrix; nonlinear Schrodinger equation; group invariance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Inui, T. (2017). GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/225377 ; http://dx.doi.org/10.14989/doctor.k20152

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Inui, Takahisa. “GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス.” 2017. Thesis, Kyoto University / 京都大学. Accessed October 31, 2020. http://hdl.handle.net/2433/225377 ; http://dx.doi.org/10.14989/doctor.k20152.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Inui, Takahisa. “GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス.” 2017. Web. 31 Oct 2020.

Vancouver:

Inui T. GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス. [Internet] [Thesis]. Kyoto University / 京都大学; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2433/225377 ; http://dx.doi.org/10.14989/doctor.k20152.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Inui T. GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION : 非線形シュレディンガー方程式に対する群不変な解の大域ダイナミクス. [Thesis]. Kyoto University / 京都大学; 2017. Available from: http://hdl.handle.net/2433/225377 ; http://dx.doi.org/10.14989/doctor.k20152

Not specified: Masters Thesis or Doctoral Dissertation

26.
Inui, Takahisa.
GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR *SCHRODINGER* * EQUATION*
.

Degree: 2017, Kyoto University

URL: http://hdl.handle.net/2433/225377

Subjects/Keywords: Global dynamics; orthogonal matrix; nonlinear Schrodinger equation; group invariance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Inui, T. (2017). GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/225377

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Inui, Takahisa. “GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION .” 2017. Thesis, Kyoto University. Accessed October 31, 2020. http://hdl.handle.net/2433/225377.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Inui, Takahisa. “GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION .” 2017. Web. 31 Oct 2020.

Vancouver:

Inui T. GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION . [Internet] [Thesis]. Kyoto University; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2433/225377.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Inui T. GLOBAL DYNAMICS OF SOLUTIONS WITH GROUP INVARIANCE FOR THE NONLINEAR SCHRODINGER EQUATION . [Thesis]. Kyoto University; 2017. Available from: http://hdl.handle.net/2433/225377

Not specified: Masters Thesis or Doctoral Dissertation

Texas A&M University

27. Do, Ngoc Thanh. Some Spectral Problems in Mathematical Physics.

Degree: PhD, Mathematics, 2016, Texas A&M University

URL: http://hdl.handle.net/1969.1/157943

► In this dissertation we deal with some spectral problems for periodic differential operators originating from mathematical physics. We begin by using quantum graphs to model…
(more)

Subjects/Keywords: Mathematical physics; spectral theory; periodic differential equations; Schrodinger equation; graphyne; carbon nanotubes; spectral gap; dispersion relation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Do, N. T. (2016). Some Spectral Problems in Mathematical Physics. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/157943

Chicago Manual of Style (16^{th} Edition):

Do, Ngoc Thanh. “Some Spectral Problems in Mathematical Physics.” 2016. Doctoral Dissertation, Texas A&M University. Accessed October 31, 2020. http://hdl.handle.net/1969.1/157943.

MLA Handbook (7^{th} Edition):

Do, Ngoc Thanh. “Some Spectral Problems in Mathematical Physics.” 2016. Web. 31 Oct 2020.

Vancouver:

Do NT. Some Spectral Problems in Mathematical Physics. [Internet] [Doctoral dissertation]. Texas A&M University; 2016. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1969.1/157943.

Council of Science Editors:

Do NT. Some Spectral Problems in Mathematical Physics. [Doctoral Dissertation]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/157943

University of Toronto

28. Zia, Haider. Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier.

Degree: 2010, University of Toronto

URL: http://hdl.handle.net/1807/25733

►

There has been much work on electron emission. It has lead to the concept of the photon and new electron sources for imaging such as… (more)

Subjects/Keywords: Photoemission; Tungsten; general solution to partial differential equations; Schrodinger equation; Field emission; Fowler-Nordheim; photomodulation; solving complex band structure; 0494

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zia, H. (2010). Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/25733

Chicago Manual of Style (16^{th} Edition):

Zia, Haider. “Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier.” 2010. Masters Thesis, University of Toronto. Accessed October 31, 2020. http://hdl.handle.net/1807/25733.

MLA Handbook (7^{th} Edition):

Zia, Haider. “Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier.” 2010. Web. 31 Oct 2020.

Vancouver:

Zia H. Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier. [Internet] [Masters thesis]. University of Toronto; 2010. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1807/25733.

Council of Science Editors:

Zia H. Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier. [Masters Thesis]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/25733

University of Illinois – Chicago

29. Kannan, Raguraman. Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/8911

► The thesis presents a variational computational framework for nanomechanics and electronic structure calculations of semiconductors. In order to predict the coupled mechanical and electronic properties…
(more)

Subjects/Keywords: Nanomechanics; Multiscale Formulation; Finite element; Electronic Band Structure; Kohn-Sham Equations; Schrodinger Wave Equation; B-Splines and NURBS; Self-consistent Solution

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kannan, R. (2012). Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8911

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kannan, Raguraman. “Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors.” 2012. Thesis, University of Illinois – Chicago. Accessed October 31, 2020. http://hdl.handle.net/10027/8911.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kannan, Raguraman. “Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors.” 2012. Web. 31 Oct 2020.

Vancouver:

Kannan R. Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10027/8911.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kannan R. Finite Element Framework for Nanomechanics and Electronic Structure Calculations of Semiconductors. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8911

Not specified: Masters Thesis or Doctoral Dissertation

Texas Tech University

30.
Keller, John William.
Finite element solution of the S-limit *Schrodinger* *equation* of helium.

Degree: Chemistry, 1979, Texas Tech University

URL: http://hdl.handle.net/2346/16023

► The Schroedinger *equation*, for all but the simplest systems, is an elliptic partial differential *equation*. Almost every method of solution is based on the expansion…
(more)

Subjects/Keywords: Quantum chemistry; Schrodinger equation; Finite element method; Helium

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Keller, J. W. (1979). Finite element solution of the S-limit Schrodinger equation of helium. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/16023

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Keller, John William. “Finite element solution of the S-limit Schrodinger equation of helium.” 1979. Thesis, Texas Tech University. Accessed October 31, 2020. http://hdl.handle.net/2346/16023.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Keller, John William. “Finite element solution of the S-limit Schrodinger equation of helium.” 1979. Web. 31 Oct 2020.

Vancouver:

Keller JW. Finite element solution of the S-limit Schrodinger equation of helium. [Internet] [Thesis]. Texas Tech University; 1979. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2346/16023.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Keller JW. Finite element solution of the S-limit Schrodinger equation of helium. [Thesis]. Texas Tech University; 1979. Available from: http://hdl.handle.net/2346/16023

Not specified: Masters Thesis or Doctoral Dissertation