Advanced search options
You searched for subject:(Schr dinger operator)
.
Showing records 1 – 2 of
2 total matches.
▼ Search Limiters
Iowa State University
1. Jacobs, Matthew Aaron. Asymptotic solutions for high frequency Helmholtz equations.
Degree: 2020, Iowa State University
URL: https://lib.dr.iastate.edu/etd/18151
Subjects/Keywords: Anisotropic Helmholtz equation; Babich's expansion; Geometrical optics; Pseudo-spectral method; Strang operator splitting; Time-dependent Schr\"{o}dinger equation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jacobs, M. A. (2020). Asymptotic solutions for high frequency Helmholtz equations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/18151
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Jacobs, Matthew Aaron. “Asymptotic solutions for high frequency Helmholtz equations.” 2020. Thesis, Iowa State University. Accessed March 03, 2021. https://lib.dr.iastate.edu/etd/18151.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Jacobs, Matthew Aaron. “Asymptotic solutions for high frequency Helmholtz equations.” 2020. Web. 03 Mar 2021.
Vancouver:
Jacobs MA. Asymptotic solutions for high frequency Helmholtz equations. [Internet] [Thesis]. Iowa State University; 2020. [cited 2021 Mar 03]. Available from: https://lib.dr.iastate.edu/etd/18151.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Jacobs MA. Asymptotic solutions for high frequency Helmholtz equations. [Thesis]. Iowa State University; 2020. Available from: https://lib.dr.iastate.edu/etd/18151
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
2. B. Langella. NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES.
Degree: 2020, Università degli Studi di Milano
URL: http://hdl.handle.net/2434/798372
Subjects/Keywords: reducibility; pseudo-differential operators; normal form; Schrö; dinger operator; spectral asymptotics; Nekhoroshev theorem; Settore MAT/07 - Fisica Matematica
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Langella, B. (2020). NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/798372
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Langella, B.. “NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES.” 2020. Thesis, Università degli Studi di Milano. Accessed March 03, 2021. http://hdl.handle.net/2434/798372.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Langella, B.. “NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES.” 2020. Web. 03 Mar 2021.
Vancouver:
Langella B. NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES. [Internet] [Thesis]. Università degli Studi di Milano; 2020. [cited 2021 Mar 03]. Available from: http://hdl.handle.net/2434/798372.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Langella B. NORMAL FORM AND KAM METHODS FOR HIGHER DIMENSIONAL LINEAR PDES. [Thesis]. Università degli Studi di Milano; 2020. Available from: http://hdl.handle.net/2434/798372
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation