Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Scalar Curvature). Showing records 1 – 30 of 37 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Languages

▼ Search Limiters

1. Aurineide Castro Fonseca. Conjectura da curvatura escalar normal.

Degree: Master, 2008, Universidade Federal do Ceará

O objetivo desta dissertaÃÃo à apresentar uma demonstraÃÃo para uma desigualdade pontual, denominada conjectura da curvatura escalar normal, a qual à vÃlida para subvariedades n-dimensionais,… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; curvatura escalar; curvatura normal; curvatura mÃdia; scalar curvature; normal scalar curvature; mean curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fonseca, A. C. (2008). Conjectura da curvatura escalar normal. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2846 ;

Chicago Manual of Style (16th Edition):

Fonseca, Aurineide Castro. “Conjectura da curvatura escalar normal.” 2008. Masters Thesis, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2846 ;.

MLA Handbook (7th Edition):

Fonseca, Aurineide Castro. “Conjectura da curvatura escalar normal.” 2008. Web. 18 Jan 2021.

Vancouver:

Fonseca AC. Conjectura da curvatura escalar normal. [Internet] [Masters thesis]. Universidade Federal do Ceará 2008. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2846 ;.

Council of Science Editors:

Fonseca AC. Conjectura da curvatura escalar normal. [Masters Thesis]. Universidade Federal do Ceará 2008. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2846 ;


University of Adelaide

2. Hallam, Michael Alexander. Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature.

Degree: 2018, University of Adelaide

 This thesis studies the applications of index theory to positive scalar curvature (PSC), in particular questions of existence and number of path components of the… (more)

Subjects/Keywords: Eta invariants; K-homology; positive scalar curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hallam, M. A. (2018). Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/118162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hallam, Michael Alexander. “Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature.” 2018. Thesis, University of Adelaide. Accessed January 18, 2021. http://hdl.handle.net/2440/118162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hallam, Michael Alexander. “Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature.” 2018. Web. 18 Jan 2021.

Vancouver:

Hallam MA. Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature. [Internet] [Thesis]. University of Adelaide; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2440/118162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hallam MA. Generalised eta invariants, end-periodic manifolds, and their applications to positive scalar curvature. [Thesis]. University of Adelaide; 2018. Available from: http://hdl.handle.net/2440/118162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Guo, Hao. Positive scalar curvature and Callias-type index theorems for proper actions.

Degree: 2018, University of Adelaide

 This thesis by publication is a study of the equivariant index theory of Dirac operators and Callias-type operators in two distinct settings, namely on cocompact… (more)

Subjects/Keywords: Positive scalar curvature; Callias-type operators; index theory; equivariant index

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guo, H. (2018). Positive scalar curvature and Callias-type index theorems for proper actions. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/118136

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guo, Hao. “Positive scalar curvature and Callias-type index theorems for proper actions.” 2018. Thesis, University of Adelaide. Accessed January 18, 2021. http://hdl.handle.net/2440/118136.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guo, Hao. “Positive scalar curvature and Callias-type index theorems for proper actions.” 2018. Web. 18 Jan 2021.

Vancouver:

Guo H. Positive scalar curvature and Callias-type index theorems for proper actions. [Internet] [Thesis]. University of Adelaide; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2440/118136.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guo H. Positive scalar curvature and Callias-type index theorems for proper actions. [Thesis]. University of Adelaide; 2018. Available from: http://hdl.handle.net/2440/118136

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. HONG LIU. PRESCRIBING SCALAR CURVATURE.

Degree: 2015, National University of Singapore

Subjects/Keywords: Scalar curvature; conformal geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LIU, H. (2015). PRESCRIBING SCALAR CURVATURE. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/121745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

LIU, HONG. “PRESCRIBING SCALAR CURVATURE.” 2015. Thesis, National University of Singapore. Accessed January 18, 2021. http://scholarbank.nus.edu.sg/handle/10635/121745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

LIU, HONG. “PRESCRIBING SCALAR CURVATURE.” 2015. Web. 18 Jan 2021.

Vancouver:

LIU H. PRESCRIBING SCALAR CURVATURE. [Internet] [Thesis]. National University of Singapore; 2015. [cited 2021 Jan 18]. Available from: http://scholarbank.nus.edu.sg/handle/10635/121745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LIU H. PRESCRIBING SCALAR CURVATURE. [Thesis]. National University of Singapore; 2015. Available from: http://scholarbank.nus.edu.sg/handle/10635/121745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Kazaras, Demetre. Gluing manifolds with boundary and bordisms of positive scalar curvature metrics.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

 This thesis presents two main results on analytic and topological aspects of scalar curvature. The first is a gluing theorem for scalar-flat manifolds with vanishing… (more)

Subjects/Keywords: Differential geometry; Scalar curvature

…Tools for Studying Scalar Curvature Conditions . . . . . . . . 4 1.3. The Structure of This… …on M . For a metric g ∈ Riem(M ), we will study its scalar curvature Rg : M → R… …implies that the average value of the scalar curvature of any metric must be 0. We can conclude… …that T 2 does not admit a metric of strictly positive or strictly negative scalar curvature… …metric of positive scalar curvature. 1 Example 1.1.2. Consider the surface with boundary Σ… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kazaras, D. (2017). Gluing manifolds with boundary and bordisms of positive scalar curvature metrics. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22698

Chicago Manual of Style (16th Edition):

Kazaras, Demetre. “Gluing manifolds with boundary and bordisms of positive scalar curvature metrics.” 2017. Doctoral Dissertation, University of Oregon. Accessed January 18, 2021. http://hdl.handle.net/1794/22698.

MLA Handbook (7th Edition):

Kazaras, Demetre. “Gluing manifolds with boundary and bordisms of positive scalar curvature metrics.” 2017. Web. 18 Jan 2021.

Vancouver:

Kazaras D. Gluing manifolds with boundary and bordisms of positive scalar curvature metrics. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1794/22698.

Council of Science Editors:

Kazaras D. Gluing manifolds with boundary and bordisms of positive scalar curvature metrics. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22698


University of Western Ontario

6. Dong, Rui. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.

Degree: 2019, University of Western Ontario

 In noncommutative geometry, the metric information of a noncommutative space is encoded in the data of a spectral triple (𝓐, \mathcal{H},D), where D plays the… (more)

Subjects/Keywords: Noncommutative Geometry; Spectral Triples; Second Quantization; Spectral Geometry; Differential Geometry; Modified Bessel Functions; Chemical Potential; Entropy; Ricci Curvature; Scalar Curvature; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dong, R. (2019). Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Thesis, University of Western Ontario. Accessed January 18, 2021. https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Web. 18 Jan 2021.

Vancouver:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2021 Jan 18]. Available from: https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

7. Xu, Chao. Non-conformal geometry on noncommutative two tori.

Degree: PhD, Mathematics, 2019, The Ohio State University

 On the spectral triple of a noncommutative manifold (𝓐,H,D), despite the absence of underlying space of points, one can still consider its scalar curvature in… (more)

Subjects/Keywords: Mathematics; noncommutative tori, pseudo-differential calculus, noncommutative scalar curvature, noncommutative scalar curvature density, index density, non-conformal change, rearrangement lemma, hypergeometric functions on Grassmannian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, C. (2019). Non-conformal geometry on noncommutative two tori. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998

Chicago Manual of Style (16th Edition):

Xu, Chao. “Non-conformal geometry on noncommutative two tori.” 2019. Doctoral Dissertation, The Ohio State University. Accessed January 18, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998.

MLA Handbook (7th Edition):

Xu, Chao. “Non-conformal geometry on noncommutative two tori.” 2019. Web. 18 Jan 2021.

Vancouver:

Xu C. Non-conformal geometry on noncommutative two tori. [Internet] [Doctoral dissertation]. The Ohio State University; 2019. [cited 2021 Jan 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998.

Council of Science Editors:

Xu C. Non-conformal geometry on noncommutative two tori. [Doctoral Dissertation]. The Ohio State University; 2019. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998

8. Amacha, Inas. Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature.

Degree: Docteur es, Mathématiques, 2017, Brest; Université libanaise

Cette thèse est consacrée à l'étude d'une famille des flots géométriques associés au problème de la courbure scalaire prescrite sur une variété riemannienne compacte. Plus… (more)

Subjects/Keywords: Métrique conforme; Courbure scalaire; Flot de Yamabe; Conformal metric; Scalar curvature; Yamabe flow; 516.3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amacha, I. (2017). Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature. (Doctoral Dissertation). Brest; Université libanaise. Retrieved from http://www.theses.fr/2017BRES0109

Chicago Manual of Style (16th Edition):

Amacha, Inas. “Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature.” 2017. Doctoral Dissertation, Brest; Université libanaise. Accessed January 18, 2021. http://www.theses.fr/2017BRES0109.

MLA Handbook (7th Edition):

Amacha, Inas. “Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature.” 2017. Web. 18 Jan 2021.

Vancouver:

Amacha I. Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature. [Internet] [Doctoral dissertation]. Brest; Université libanaise; 2017. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2017BRES0109.

Council of Science Editors:

Amacha I. Flot de Yamabe avec courbure scalaire prescrite : Yamabe flow with prescribed scalar curvature. [Doctoral Dissertation]. Brest; Université libanaise; 2017. Available from: http://www.theses.fr/2017BRES0109


University of California – Santa Cruz

9. Yuan, Wei. The geometry of vacuum static spaces and deformations of scalar curvature.

Degree: Mathematics, 2015, University of California – Santa Cruz

 In this dissertation we mainly study the geometric structure of vacuum static spaces and some related geometric problems. In particular, we have made progress in… (more)

Subjects/Keywords: Mathematics; Theoretical physics; Brown-York mass; deformation of scalar curvature; rigidity; vacuum static space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yuan, W. (2015). The geometry of vacuum static spaces and deformations of scalar curvature. (Thesis). University of California – Santa Cruz. Retrieved from http://www.escholarship.org/uc/item/55w1c98q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yuan, Wei. “The geometry of vacuum static spaces and deformations of scalar curvature.” 2015. Thesis, University of California – Santa Cruz. Accessed January 18, 2021. http://www.escholarship.org/uc/item/55w1c98q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yuan, Wei. “The geometry of vacuum static spaces and deformations of scalar curvature.” 2015. Web. 18 Jan 2021.

Vancouver:

Yuan W. The geometry of vacuum static spaces and deformations of scalar curvature. [Internet] [Thesis]. University of California – Santa Cruz; 2015. [cited 2021 Jan 18]. Available from: http://www.escholarship.org/uc/item/55w1c98q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yuan W. The geometry of vacuum static spaces and deformations of scalar curvature. [Thesis]. University of California – Santa Cruz; 2015. Available from: http://www.escholarship.org/uc/item/55w1c98q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Mazzieri, Lorenzo. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.

Degree: Docteur es, Mathématiques, 2008, Université Paris-Est

Ces deux dernières décennies, les techniques de somme connexe essentiellement basées sur des outils d'analyse ont permis de faire des progrès importants dans la compréhension… (more)

Subjects/Keywords: Sommes connexes; Courbure scalaire; Connected sum; Scalar curvature; Yamabe equation; Einstein constraint equations; Conformal geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mazzieri, L. (2008). Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2008PEST0003

Chicago Manual of Style (16th Edition):

Mazzieri, Lorenzo. “Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.” 2008. Doctoral Dissertation, Université Paris-Est. Accessed January 18, 2021. http://www.theses.fr/2008PEST0003.

MLA Handbook (7th Edition):

Mazzieri, Lorenzo. “Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.” 2008. Web. 18 Jan 2021.

Vancouver:

Mazzieri L. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. [Internet] [Doctoral dissertation]. Université Paris-Est; 2008. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2008PEST0003.

Council of Science Editors:

Mazzieri L. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. [Doctoral Dissertation]. Université Paris-Est; 2008. Available from: http://www.theses.fr/2008PEST0003


Texas A&M University

11. Samurkas, Suleyman Kagan. Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups.

Degree: PhD, Mathematics, 2018, Texas A&M University

 We derive a lower and an upper bound for the rank of the finite part of operator K-theory groups of maximal and reduced C*-algebras of… (more)

Subjects/Keywords: finite part; operator K-theory; structure group; positive scalar curvature metric; polynomially full group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samurkas, S. K. (2018). Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/173478

Chicago Manual of Style (16th Edition):

Samurkas, Suleyman Kagan. “Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups.” 2018. Doctoral Dissertation, Texas A&M University. Accessed January 18, 2021. http://hdl.handle.net/1969.1/173478.

MLA Handbook (7th Edition):

Samurkas, Suleyman Kagan. “Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups.” 2018. Web. 18 Jan 2021.

Vancouver:

Samurkas SK. Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups. [Internet] [Doctoral dissertation]. Texas A&M University; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1969.1/173478.

Council of Science Editors:

Samurkas SK. Bounds for the Rank of the Finite Part of Operator K-Theory and Polynomially Full Groups. [Doctoral Dissertation]. Texas A&M University; 2018. Available from: http://hdl.handle.net/1969.1/173478

12. Wang, Jian. Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature.

Degree: Docteur es, Mathématiques appliquées, 2019, Université Grenoble Alpes (ComUE)

Un des objectifs de ce mémoire est de comprendre les espaces munis de métrique complète de courbure scalaire positive. Il y a plusieurs obstructions topologiques… (more)

Subjects/Keywords: Variétés ouvertes; Métrique riemannienne; Courbure scalaire; Open manifolds; Riemannian metric; Scalar curvature; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, J. (2019). Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2019GREAM076

Chicago Manual of Style (16th Edition):

Wang, Jian. “Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature.” 2019. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed January 18, 2021. http://www.theses.fr/2019GREAM076.

MLA Handbook (7th Edition):

Wang, Jian. “Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature.” 2019. Web. 18 Jan 2021.

Vancouver:

Wang J. Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2019. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2019GREAM076.

Council of Science Editors:

Wang J. Les 3-variétés contractiles et courbure scalaire positive : Contractible 3-manifold and Positive scalar curvature. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2019. Available from: http://www.theses.fr/2019GREAM076

13. Rondinelle Marcolino Batista. Rigidez de solitons gradiente.

Degree: Master, 2010, Universidade Federal do Ceará

Nosso objetivo nesse trabalho à apresentar um teorema que caracteriza os solitons gradiente rÃgidos para caso nÃo compacto. Como aplicaÃÃo provaremos que os solitons gradiente… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades completas; curvatura escalar constante; complete manifold; constant scalar curvature; Variedades riemanianas; Riemannian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Batista, R. M. (2010). Rigidez de solitons gradiente. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11142 ;

Chicago Manual of Style (16th Edition):

Batista, Rondinelle Marcolino. “Rigidez de solitons gradiente.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11142 ;.

MLA Handbook (7th Edition):

Batista, Rondinelle Marcolino. “Rigidez de solitons gradiente.” 2010. Web. 18 Jan 2021.

Vancouver:

Batista RM. Rigidez de solitons gradiente. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11142 ;.

Council of Science Editors:

Batista RM. Rigidez de solitons gradiente. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11142 ;

14. Rafael Jorge Pontes DiÃgenes. MÃtricas m-quasi-Einstein em variedades compactas.

Degree: Master, 2012, Universidade Federal do Ceará

Nosso objetivo nesse trabalho à apresentar uma generalizaÃÃo das mÃtricas quasi-Einstein para campo de vetores suaves nÃo necessariamente gradiente, alÃm disso, apresentar algumas fÃrmulas integrais… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; geometria diferencial; grupos finitos; differential geometry; finite groups; curvatura escalar; variedades de Einstein; scalar curvature; Einstein varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

DiÃgenes, R. J. P. (2012). MÃtricas m-quasi-Einstein em variedades compactas. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8403 ;

Chicago Manual of Style (16th Edition):

DiÃgenes, Rafael Jorge Pontes. “MÃtricas m-quasi-Einstein em variedades compactas.” 2012. Masters Thesis, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8403 ;.

MLA Handbook (7th Edition):

DiÃgenes, Rafael Jorge Pontes. “MÃtricas m-quasi-Einstein em variedades compactas.” 2012. Web. 18 Jan 2021.

Vancouver:

DiÃgenes RJP. MÃtricas m-quasi-Einstein em variedades compactas. [Internet] [Masters thesis]. Universidade Federal do Ceará 2012. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8403 ;.

Council of Science Editors:

DiÃgenes RJP. MÃtricas m-quasi-Einstein em variedades compactas. [Masters Thesis]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8403 ;


University of Oregon

15. Walsh, Mark, 1976-. Metrics of positive scalar curvature and generalised Morse functions.

Degree: 2009, University of Oregon

 We study the topology of the space of metrics of positive scalar curvature on a compact manifold. The main tool we use for constructing such… (more)

Subjects/Keywords: Scalar curvature; Morse functions; Concordances; Wrinkled maps; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Walsh, Mark, 1. (2009). Metrics of positive scalar curvature and generalised Morse functions. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/10265

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Walsh, Mark, 1976-. “Metrics of positive scalar curvature and generalised Morse functions.” 2009. Thesis, University of Oregon. Accessed January 18, 2021. http://hdl.handle.net/1794/10265.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Walsh, Mark, 1976-. “Metrics of positive scalar curvature and generalised Morse functions.” 2009. Web. 18 Jan 2021.

Vancouver:

Walsh, Mark 1. Metrics of positive scalar curvature and generalised Morse functions. [Internet] [Thesis]. University of Oregon; 2009. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1794/10265.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Walsh, Mark 1. Metrics of positive scalar curvature and generalised Morse functions. [Thesis]. University of Oregon; 2009. Available from: http://hdl.handle.net/1794/10265

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Sadeghi, Sajad. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.

Degree: 2016, University of Western Ontario

 In the first part of this thesis, a noncommutative analogue of Gross' logarithmic Sobolev inequality for the noncommutative 2-torus is investigated. More precisely, Weissler's result… (more)

Subjects/Keywords: Logarithmic Sobolev Inequality; Scalar Curvature; Noncommutative Tori; Pseudodifferential Operators; Conformal Perturbation; Asymptotic Expansion; Analysis; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sadeghi, S. (2016). On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sadeghi, Sajad. “On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.” 2016. Thesis, University of Western Ontario. Accessed January 18, 2021. https://ir.lib.uwo.ca/etd/3947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sadeghi, Sajad. “On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori.” 2016. Web. 18 Jan 2021.

Vancouver:

Sadeghi S. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2021 Jan 18]. Available from: https://ir.lib.uwo.ca/etd/3947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sadeghi S. On Logarithmic Sobolev Inequality And A Scalar Curvature Formula For Noncommutative Tori. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. ZHOU FENG. SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN.

Degree: 2015, National University of Singapore

Subjects/Keywords: Scalar Curvature; Blow-up; Flow Equation; Critical Points

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

FENG, Z. (2015). SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/121121

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

FENG, ZHOU. “SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN.” 2015. Thesis, National University of Singapore. Accessed January 18, 2021. http://scholarbank.nus.edu.sg/handle/10635/121121.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

FENG, ZHOU. “SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN.” 2015. Web. 18 Jan 2021.

Vancouver:

FENG Z. SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN. [Internet] [Thesis]. National University of Singapore; 2015. [cited 2021 Jan 18]. Available from: http://scholarbank.nus.edu.sg/handle/10635/121121.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

FENG Z. SYMMETRIC EXISTENCE RESULTS, AND AGGREGATED, TOWERING BLOW-UP SEQUENCES FOR THE PRESCRIBED SCALAR CURVATURE EQUATION ON SN. [Thesis]. National University of Singapore; 2015. Available from: http://scholarbank.nus.edu.sg/handle/10635/121121

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Duke University

18. Jauregui, Jeffrey Loren. Mass Estimates, Conformal Techniques, and Singularities in General Relativity .

Degree: 2010, Duke University

  In general relativity, the Riemannian Penrose inequality (RPI) provides a lower bound for the ADM mass of an asymptotically flat manifold of nonnegative scalar(more)

Subjects/Keywords: Mathematics; Conformal; Mass; Relativity; Scalar curvature; Singularities; Spacetime

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jauregui, J. L. (2010). Mass Estimates, Conformal Techniques, and Singularities in General Relativity . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/2284

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jauregui, Jeffrey Loren. “Mass Estimates, Conformal Techniques, and Singularities in General Relativity .” 2010. Thesis, Duke University. Accessed January 18, 2021. http://hdl.handle.net/10161/2284.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jauregui, Jeffrey Loren. “Mass Estimates, Conformal Techniques, and Singularities in General Relativity .” 2010. Web. 18 Jan 2021.

Vancouver:

Jauregui JL. Mass Estimates, Conformal Techniques, and Singularities in General Relativity . [Internet] [Thesis]. Duke University; 2010. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10161/2284.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jauregui JL. Mass Estimates, Conformal Techniques, and Singularities in General Relativity . [Thesis]. Duke University; 2010. Available from: http://hdl.handle.net/10161/2284

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Jesus, Isadora Maria de. Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera.

Degree: 2009, Universidade Federal de Alagoas

In this work we prove two theorems that characterize the hypersurfaces in the unitary sphere of dimension n+1. The first result, obtained by H. Alencar… (more)

Subjects/Keywords: Geometria diferencial; Curvatura media; Curvatura scalar; Hipersuperfície; Laplaciano; Alencar do Carmo, teorema de; Li Haizhong, teorema de; Differential geometry; Mean curvature; Scalar curvature; Hypersurfaces; Laplacian; Alencar and do Carmo s, theorem; Li Haizhong s, theorem; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jesus, I. M. d. (2009). Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera. (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/1025

Chicago Manual of Style (16th Edition):

Jesus, Isadora Maria de. “Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera.” 2009. Masters Thesis, Universidade Federal de Alagoas. Accessed January 18, 2021. http://www.repositorio.ufal.br/handle/riufal/1025.

MLA Handbook (7th Edition):

Jesus, Isadora Maria de. “Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera.” 2009. Web. 18 Jan 2021.

Vancouver:

Jesus IMd. Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera. [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2009. [cited 2021 Jan 18]. Available from: http://www.repositorio.ufal.br/handle/riufal/1025.

Council of Science Editors:

Jesus IMd. Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera. [Masters Thesis]. Universidade Federal de Alagoas; 2009. Available from: http://www.repositorio.ufal.br/handle/riufal/1025

20. Feliciano MarcÃlio Aguiar VitÃrio. HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante.

Degree: Master, 1995, Universidade Federal do Ceará

Neste trabalho apresentamos uma classificaÃÃo das hipersuperficies rotacionais com curvatura escalar constante nas formas espaciais devida a M. Leite

In this work we present a… (more)

Subjects/Keywords: Curvatura escalar constante; Hipersuperficies rotacionais; GEOMETRIA DIFERENCIAL; Rotational hypersurfaces; constant scalar curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

VitÃrio, F. M. A. (1995). HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1843 ;

Chicago Manual of Style (16th Edition):

VitÃrio, Feliciano MarcÃlio Aguiar. “HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante.” 1995. Masters Thesis, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1843 ;.

MLA Handbook (7th Edition):

VitÃrio, Feliciano MarcÃlio Aguiar. “HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante.” 1995. Web. 18 Jan 2021.

Vancouver:

VitÃrio FMA. HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante. [Internet] [Masters thesis]. Universidade Federal do Ceará 1995. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1843 ;.

Council of Science Editors:

VitÃrio FMA. HipersuperfÃcies rotacionais com curvatura escalar constante em espaÃos de curvatura constante. [Masters Thesis]. Universidade Federal do Ceará 1995. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1843 ;

21. Melo, Rodrigo Fernandes de Moura. Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1).

Degree: 2009, Universidade Federal de Alagoas

This dissertation has as base Jocelino Sato and Vicente de Souza Neto's paper called Complete and Stable O(p + 1) x O(q + 1)-Invariant Hypersurfaces… (more)

Subjects/Keywords: Cone; Curvatura escalar; Curva geratriz; Grupo de Lie; Hipersuperfície; Cone; Hypersurface; Lie group; Profile curve; Scalar curvature; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Melo, R. F. d. M. (2009). Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1). (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/1030

Chicago Manual of Style (16th Edition):

Melo, Rodrigo Fernandes de Moura. “Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1).” 2009. Masters Thesis, Universidade Federal de Alagoas. Accessed January 18, 2021. http://www.repositorio.ufal.br/handle/riufal/1030.

MLA Handbook (7th Edition):

Melo, Rodrigo Fernandes de Moura. “Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1).” 2009. Web. 18 Jan 2021.

Vancouver:

Melo RFdM. Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1). [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2009. [cited 2021 Jan 18]. Available from: http://www.repositorio.ufal.br/handle/riufal/1030.

Council of Science Editors:

Melo RFdM. Hipersuperfícies em Rp+q+2 de curvatura escalar nula invariantes por O(p+1) x O(q+1). [Masters Thesis]. Universidade Federal de Alagoas; 2009. Available from: http://www.repositorio.ufal.br/handle/riufal/1030

22. Túlio Guimarães. Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula.

Degree: 2011, Federal University of Uberlândia

Nesta dissertação estudamos as hipersuperfícies que possuem curvatura escalar nula. O trabalho teve como foco as hipersuperfícies invariantes por um subgrupo de isometrias, que são… (more)

Subjects/Keywords: Hipersuperfícies invariantes; Normal de Gauss; Curvatura escalar; Equações diferenciais; MATEMATICA; Geometria descritiva; Hipersuperfícies; Isometria (Matemática); Invariant hypersurfaces; Gauss map; Scalar curvature; Dierential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guimarães, T. (2011). Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula. (Thesis). Federal University of Uberlândia. Retrieved from http://www.bdtd.ufu.br//tde_busca/arquivo.php?codArquivo=3561

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guimarães, Túlio. “Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula.” 2011. Thesis, Federal University of Uberlândia. Accessed January 18, 2021. http://www.bdtd.ufu.br//tde_busca/arquivo.php?codArquivo=3561.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guimarães, Túlio. “Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula.” 2011. Web. 18 Jan 2021.

Vancouver:

Guimarães T. Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula. [Internet] [Thesis]. Federal University of Uberlândia; 2011. [cited 2021 Jan 18]. Available from: http://www.bdtd.ufu.br//tde_busca/arquivo.php?codArquivo=3561.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guimarães T. Hipersuperfícies do R4 invariantes por um subgrupo de isometrias com curvatura escalar nula. [Thesis]. Federal University of Uberlândia; 2011. Available from: http://www.bdtd.ufu.br//tde_busca/arquivo.php?codArquivo=3561

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

23. Sousa, Gabriel Araújo de. Rigidez de variedades tipo-Einstein gradiente.

Degree: 2019, Universidade Federal do Amazonas

Esta dissertação tem como fundamento o estudo detalhado dos resultados de rigidez obtidos no preprint intitulado “A note on gradient Einstein-type manifolds” devido a José… (more)

Subjects/Keywords: Rigidez; Variedades tipo-Einstein; Curvatura escalar constante; Variedades Einstein; Rigidity; Einstein-type manifolds; Constant scalar curvature; Einstein manifolds; CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA: GEOMETRIA E TOPOLOGIA: GEOMETRIA DIFERENCIAL

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sousa, G. A. d. (2019). Rigidez de variedades tipo-Einstein gradiente. (Masters Thesis). Universidade Federal do Amazonas. Retrieved from https://tede.ufam.edu.br/handle/tede/7013

Chicago Manual of Style (16th Edition):

Sousa, Gabriel Araújo de. “Rigidez de variedades tipo-Einstein gradiente.” 2019. Masters Thesis, Universidade Federal do Amazonas. Accessed January 18, 2021. https://tede.ufam.edu.br/handle/tede/7013.

MLA Handbook (7th Edition):

Sousa, Gabriel Araújo de. “Rigidez de variedades tipo-Einstein gradiente.” 2019. Web. 18 Jan 2021.

Vancouver:

Sousa GAd. Rigidez de variedades tipo-Einstein gradiente. [Internet] [Masters thesis]. Universidade Federal do Amazonas; 2019. [cited 2021 Jan 18]. Available from: https://tede.ufam.edu.br/handle/tede/7013.

Council of Science Editors:

Sousa GAd. Rigidez de variedades tipo-Einstein gradiente. [Masters Thesis]. Universidade Federal do Amazonas; 2019. Available from: https://tede.ufam.edu.br/handle/tede/7013

24. Santos, Matheus Hudson Gama dos. Sobre métricas críticas do funcional curvatura escalar total.

Degree: 2019, Universidade Federal do Amazonas

Esta dissertação tem como propósito explicar as métricas críticas do funcional curvatura escalar total (CPE) e detalhar os resultados principais obtidos nos artigos intitulados "A… (more)

Subjects/Keywords: Equação do ponto crítico; Curvatura escalar; Funcionais riemannianos; Variedades Einstein; Critical point equation; Scalar curvature; Riemannian functionals; Einstein manifolds; CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Santos, M. H. G. d. (2019). Sobre métricas críticas do funcional curvatura escalar total. (Masters Thesis). Universidade Federal do Amazonas. Retrieved from https://tede.ufam.edu.br/handle/tede/7174

Chicago Manual of Style (16th Edition):

Santos, Matheus Hudson Gama dos. “Sobre métricas críticas do funcional curvatura escalar total.” 2019. Masters Thesis, Universidade Federal do Amazonas. Accessed January 18, 2021. https://tede.ufam.edu.br/handle/tede/7174.

MLA Handbook (7th Edition):

Santos, Matheus Hudson Gama dos. “Sobre métricas críticas do funcional curvatura escalar total.” 2019. Web. 18 Jan 2021.

Vancouver:

Santos MHGd. Sobre métricas críticas do funcional curvatura escalar total. [Internet] [Masters thesis]. Universidade Federal do Amazonas; 2019. [cited 2021 Jan 18]. Available from: https://tede.ufam.edu.br/handle/tede/7174.

Council of Science Editors:

Santos MHGd. Sobre métricas críticas do funcional curvatura escalar total. [Masters Thesis]. Universidade Federal do Amazonas; 2019. Available from: https://tede.ufam.edu.br/handle/tede/7174

25. Pimentel, Soraya Bianca Souza. H-Quase Sóliton de Ricci.

Degree: 2016, Universidade Federal do Amazonas

Neste trabalho vamos estudar o conceito de h-quase sólitons de Ricci introduzido por Gomes-Wang-Xia o qual é uma extensão natural dos quase sólitons de Ricci… (more)

Subjects/Keywords: Produto Warped; Curvatura Escalar; Quase Sólitons de Ricci; Esfera Euclidiana; Warped Product; Scalar Curvature; Almost Ricci Solitons; Euclidean Sphere; CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pimentel, S. B. S. (2016). H-Quase Sóliton de Ricci. (Masters Thesis). Universidade Federal do Amazonas. Retrieved from https://tede.ufam.edu.br/handle/tede/6392

Chicago Manual of Style (16th Edition):

Pimentel, Soraya Bianca Souza. “H-Quase Sóliton de Ricci.” 2016. Masters Thesis, Universidade Federal do Amazonas. Accessed January 18, 2021. https://tede.ufam.edu.br/handle/tede/6392.

MLA Handbook (7th Edition):

Pimentel, Soraya Bianca Souza. “H-Quase Sóliton de Ricci.” 2016. Web. 18 Jan 2021.

Vancouver:

Pimentel SBS. H-Quase Sóliton de Ricci. [Internet] [Masters thesis]. Universidade Federal do Amazonas; 2016. [cited 2021 Jan 18]. Available from: https://tede.ufam.edu.br/handle/tede/6392.

Council of Science Editors:

Pimentel SBS. H-Quase Sóliton de Ricci. [Masters Thesis]. Universidade Federal do Amazonas; 2016. Available from: https://tede.ufam.edu.br/handle/tede/6392


University of Notre Dame

26. Raymond Jensen. Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>.

Degree: Mathematics, 2008, University of Notre Dame

  In this article we investigate volume invariants on the boundary of conformally compact manifolds, subject to constant scalar curvature condition. This work is a… (more)

Subjects/Keywords: boundary invariants; Einstein condition; measure; conformally compact; constant scalar curvature condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jensen, R. (2008). Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/sj13902274j

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jensen, Raymond. “Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>.” 2008. Thesis, University of Notre Dame. Accessed January 18, 2021. https://curate.nd.edu/show/sj13902274j.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jensen, Raymond. “Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>.” 2008. Web. 18 Jan 2021.

Vancouver:

Jensen R. Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>. [Internet] [Thesis]. University of Notre Dame; 2008. [cited 2021 Jan 18]. Available from: https://curate.nd.edu/show/sj13902274j.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jensen R. Integral Boundary Invariants for Conformally Compact Einstein Manifolds and Generalizations</h1>. [Thesis]. University of Notre Dame; 2008. Available from: https://curate.nd.edu/show/sj13902274j

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Josà Nazareno Vieira Gomes. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.

Degree: PhD, 2012, Universidade Federal do Ceará

Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Ãngulo de contato; toro de Clifford; curvatura mÃdia constante; esfera euclidiana; quase sÃliton de Ricci; campo de vetores conforme; curvatura escalar constante; contact angle; Clifford torus; constant mean curvature; euclidian sphere; almost Ricci soliton; conformal vector fields; constant scalar curvature; variedades riemanianas; Riemannian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gomes, J. N. V. (2012). Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;

Chicago Manual of Style (16th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Doctoral Dissertation, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

MLA Handbook (7th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Web. 18 Jan 2021.

Vancouver:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2012. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

Council of Science Editors:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Doctoral Dissertation]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;

28. Francisco de Assiss Benjamim Filho. A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy.

Degree: PhD, 2015, Universidade Federal do Ceará

Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; funcional curvatura escalar total; primeiro autovalor do laplaciano; diÃmetro de hipersuperfÃcies da esfera; variedades com energia constante; total scalar curvature functional; first eigenvalue of the Laplacian; diameter of hypersurfaces of the sphere; manifolds with constant energy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Filho, F. d. A. B. (2015). A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748 ;

Chicago Manual of Style (16th Edition):

Filho, Francisco de Assiss Benjamim. “A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy.” 2015. Doctoral Dissertation, Universidade Federal do Ceará. Accessed January 18, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748 ;.

MLA Handbook (7th Edition):

Filho, Francisco de Assiss Benjamim. “A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy.” 2015. Web. 18 Jan 2021.

Vancouver:

Filho FdAB. A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2015. [cited 2021 Jan 18]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748 ;.

Council of Science Editors:

Filho FdAB. A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy. [Doctoral Dissertation]. Universidade Federal do Ceará 2015. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748 ;


Université de Montréal

29. Boulanger, Laurence. Sur une classe de structures kählériennes généralisées toriques.

Degree: 2016, Université de Montréal

Subjects/Keywords: Géométrie kählérienne généralisée; Géométrie torique; Courbure scalaire; Generalized Kähler geometry; Toric geometry; Scalar curvature; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boulanger, L. (2016). Sur une classe de structures kählériennes généralisées toriques. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/13717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Boulanger, Laurence. “Sur une classe de structures kählériennes généralisées toriques.” 2016. Thesis, Université de Montréal. Accessed January 18, 2021. http://hdl.handle.net/1866/13717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Boulanger, Laurence. “Sur une classe de structures kählériennes généralisées toriques.” 2016. Web. 18 Jan 2021.

Vancouver:

Boulanger L. Sur une classe de structures kählériennes généralisées toriques. [Internet] [Thesis]. Université de Montréal; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1866/13717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boulanger L. Sur une classe de structures kählériennes généralisées toriques. [Thesis]. Université de Montréal; 2016. Available from: http://hdl.handle.net/1866/13717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Otago

30. Daszuta, Boris. Numerical scalar curvature deformation and a gluing construction .

Degree: University of Otago

 In this work a new numerical technique to prepare Cauchy data for the initial value problem (IVP) formulation of Einstein's field equations (EFE) is presented.… (more)

Subjects/Keywords: numerical relativity; gluing solutions; initial data; constraint equations; spin weight; spectral methods; arbitrary precision; complex analysis; scalar curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daszuta, B. (n.d.). Numerical scalar curvature deformation and a gluing construction . (Doctoral Dissertation). University of Otago. Retrieved from http://hdl.handle.net/10523/8967

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Daszuta, Boris. “Numerical scalar curvature deformation and a gluing construction .” Doctoral Dissertation, University of Otago. Accessed January 18, 2021. http://hdl.handle.net/10523/8967.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Daszuta, Boris. “Numerical scalar curvature deformation and a gluing construction .” Web. 18 Jan 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Daszuta B. Numerical scalar curvature deformation and a gluing construction . [Internet] [Doctoral dissertation]. University of Otago; [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10523/8967.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Daszuta B. Numerical scalar curvature deformation and a gluing construction . [Doctoral Dissertation]. University of Otago; Available from: http://hdl.handle.net/10523/8967

Note: this citation may be lacking information needed for this citation format:
No year of publication.

[1] [2]

.