Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Riesz Representation Theorem)`

.
Showing records 1 – 6 of
6 total matches.

▼ Search Limiters

Georgia State University

1. Kastine, Jeremiah D. On the Lebesgue Integral.

Degree: MS, Mathematics and Statistics, 2011, Georgia State University

URL: https://scholarworks.gsu.edu/math_theses/93

► We look from a new point of view at the definition and basic properties of the Lebesgue measure and integral on Euclidean spaces, on…
(more)

Subjects/Keywords: Lebesgue measure; Lebesgue integral; Fubini's theorem; Locally compact Hausdorff space; Riesz representation theorem; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kastine, J. D. (2011). On the Lebesgue Integral. (Thesis). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_theses/93

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kastine, Jeremiah D. “On the Lebesgue Integral.” 2011. Thesis, Georgia State University. Accessed August 10, 2020. https://scholarworks.gsu.edu/math_theses/93.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kastine, Jeremiah D. “On the Lebesgue Integral.” 2011. Web. 10 Aug 2020.

Vancouver:

Kastine JD. On the Lebesgue Integral. [Internet] [Thesis]. Georgia State University; 2011. [cited 2020 Aug 10]. Available from: https://scholarworks.gsu.edu/math_theses/93.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kastine JD. On the Lebesgue Integral. [Thesis]. Georgia State University; 2011. Available from: https://scholarworks.gsu.edu/math_theses/93

Not specified: Masters Thesis or Doctoral Dissertation

2.
Batista, Cesar Adriano.
Generalizações do teorema de representação de * Riesz*.

Degree: Mestrado, Matemática, 2009, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20072009-144313/ ;

►

Dados um espaço de medida (X;A;m) e números reais p,q>1 com 1/p+1/q=1, o Teorema de Representação de *Riesz* afirma que Lq(X;A;m) é o dual topológico…
(more)

Subjects/Keywords: Blocos infinitos; Espaços de medida; Espaços Lp; Infinite blocks; Invariant cardinal.; Invariantes cardinais.; Lp spaces; measure spaces; Medidas perfeitas; Perfect measures; Teorema de Representação de Riesz; the Riesz representation theorem.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Batista, C. A. (2009). Generalizações do teorema de representação de Riesz. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20072009-144313/ ;

Chicago Manual of Style (16^{th} Edition):

Batista, Cesar Adriano. “Generalizações do teorema de representação de Riesz.” 2009. Masters Thesis, University of São Paulo. Accessed August 10, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20072009-144313/ ;.

MLA Handbook (7^{th} Edition):

Batista, Cesar Adriano. “Generalizações do teorema de representação de Riesz.” 2009. Web. 10 Aug 2020.

Vancouver:

Batista CA. Generalizações do teorema de representação de Riesz. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2020 Aug 10]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20072009-144313/ ;.

Council of Science Editors:

Batista CA. Generalizações do teorema de representação de Riesz. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20072009-144313/ ;

3.
Williams, Stanley C. (Stanley Carl).
The *Riesz* *Representation* * Theorem*.

Degree: 1980, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc504232/

► In 1909, F. *Riesz* succeeded in giving an integral represntation for continuous linear functionals on C[0,1]. Although other authors, notably Hadamard and Frechet, had given…
(more)

Subjects/Keywords: Riesz Representation Theorem; Functional analysis.; continuous linear functionals

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Williams, S. C. (. C. (1980). The Riesz Representation Theorem. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc504232/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Williams, Stanley C (Stanley Carl). “The Riesz Representation Theorem.” 1980. Thesis, North Texas State University. Accessed August 10, 2020. https://digital.library.unt.edu/ark:/67531/metadc504232/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Williams, Stanley C (Stanley Carl). “The Riesz Representation Theorem.” 1980. Web. 10 Aug 2020.

Vancouver:

Williams SC(C. The Riesz Representation Theorem. [Internet] [Thesis]. North Texas State University; 1980. [cited 2020 Aug 10]. Available from: https://digital.library.unt.edu/ark:/67531/metadc504232/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Williams SC(C. The Riesz Representation Theorem. [Thesis]. North Texas State University; 1980. Available from: https://digital.library.unt.edu/ark:/67531/metadc504232/

Not specified: Masters Thesis or Doctoral Dissertation

4. Koné, Mamadou Ibrahima. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris 1

URL: http://www.theses.fr/2016PA01E063

►

L'objectif de cette thèse est de contribuer à l'optimisation de problèmes dynamiques en présence de retard. Le point de vue qui nous intéressera est celui… (more)

Subjects/Keywords: Résolvante; Équation différentielle fonctionnelle linéarisée; Contrôle optimal; Principe de Pontryagin; Équation différentielle fonctionnelle; Calcul des variations; Condition d'Euler-Lagrange; Théorème de représentation de Riesz; Resolvent; Linear delay functional differential equation; Optimal control; Pontryagin principle; Functional differential equation; Calculus of variation; Euler-Lagrange condition; Riesz representation theorem; 515

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Koné, M. I. (2016). Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. (Doctoral Dissertation). Paris 1. Retrieved from http://www.theses.fr/2016PA01E063

Chicago Manual of Style (16^{th} Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Doctoral Dissertation, Paris 1. Accessed August 10, 2020. http://www.theses.fr/2016PA01E063.

MLA Handbook (7^{th} Edition):

Koné, Mamadou Ibrahima. “Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space.” 2016. Web. 10 Aug 2020.

Vancouver:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Internet] [Doctoral dissertation]. Paris 1; 2016. [cited 2020 Aug 10]. Available from: http://www.theses.fr/2016PA01E063.

Council of Science Editors:

Koné MI. Contrôle optimal et calcul des variations en présence de retard sur l'état : Optimal control and calculus of variations with delay in state space. [Doctoral Dissertation]. Paris 1; 2016. Available from: http://www.theses.fr/2016PA01E063

University of North Texas

5. Abbott, Catherine Ann. Operators on Continuous Function Spaces and Weak Precompactness.

Degree: 1988, University of North Texas

URL: https://digital.library.unt.edu/ark:/67531/metadc331171/

► If T:C(H,X) – >Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m: – >L(X,Y**) so that T(f) =…
(more)

Subjects/Keywords: bounded linear operators; continuous function spaces; Riesz Representation Theorem; mathematics; Compact operators.; Functions, Continuous.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Abbott, C. A. (1988). Operators on Continuous Function Spaces and Weak Precompactness. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc331171/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Abbott, Catherine Ann. “Operators on Continuous Function Spaces and Weak Precompactness.” 1988. Thesis, University of North Texas. Accessed August 10, 2020. https://digital.library.unt.edu/ark:/67531/metadc331171/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Abbott, Catherine Ann. “Operators on Continuous Function Spaces and Weak Precompactness.” 1988. Web. 10 Aug 2020.

Vancouver:

Abbott CA. Operators on Continuous Function Spaces and Weak Precompactness. [Internet] [Thesis]. University of North Texas; 1988. [cited 2020 Aug 10]. Available from: https://digital.library.unt.edu/ark:/67531/metadc331171/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Abbott CA. Operators on Continuous Function Spaces and Weak Precompactness. [Thesis]. University of North Texas; 1988. Available from: https://digital.library.unt.edu/ark:/67531/metadc331171/

Not specified: Masters Thesis or Doctoral Dissertation

6.
Mathew, Panakkal J.
Three Topics in Analysis: (I) The Fundamental *Theorem* of Calculus Implies that of Algebra, (II) Mini Sums for the *Riesz* Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds.

Degree: PhD, Mathematics and Statistics, 2011, Georgia State University

URL: https://scholarworks.gsu.edu/math_diss/2

► We look at three distinct topics in analysis. In the first we give a direct and easy proof that the usual Newton-Leibniz rule implies…
(more)

Subjects/Keywords: Fundamental theorem of calculus; Fundamental theorem of algebra; Riesz representation theorem; Regular measure; Holomorphic domination; Complex Banach manifolds; Stein manifolds.; Mathematics

…algebra) and at the graduate level (the *Riesz* *representation* *theorem* for positive… …integration against certain type of measures.
The *Riesz* *representation* *theorem* for positive linear… …*Riesz* *representation* *theorem* is based on monotone limits,
the Daniell integral, and Stone’s… …do so implicitly in the case of the *Riesz* *representation*
*theorem* below. We imagine the… …when X is a
compact metric space.
*Theorem* 1. (*Riesz* *representation* *theorem*) Let X…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mathew, P. J. (2011). Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/2

Chicago Manual of Style (16^{th} Edition):

Mathew, Panakkal J. “Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds.” 2011. Doctoral Dissertation, Georgia State University. Accessed August 10, 2020. https://scholarworks.gsu.edu/math_diss/2.

MLA Handbook (7^{th} Edition):

Mathew, Panakkal J. “Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds.” 2011. Web. 10 Aug 2020.

Vancouver:

Mathew PJ. Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds. [Internet] [Doctoral dissertation]. Georgia State University; 2011. [cited 2020 Aug 10]. Available from: https://scholarworks.gsu.edu/math_diss/2.

Council of Science Editors:

Mathew PJ. Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds. [Doctoral Dissertation]. Georgia State University; 2011. Available from: https://scholarworks.gsu.edu/math_diss/2