Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Riemannian manifolds)`

.
Showing records 1 – 30 of
131 total matches.

Search Limiters

Dates

- 2016 – 2020 (21)
- 2011 – 2015 (46)
- 2006 – 2010 (38)
- 2001 – 2005 (10)
- 1996 – 2000 (13)

Universities

- Universidade Federal do Ceará (27)
- ETH Zürich (16)

Department

- Mathematics (13)
- Department of Mathematics (10)

Languages

- English (64)
- Portuguese (32)

Country

- US (41)
- Brazil (36)
- Switzerland (16)
- Australia (11)

▼ Search Limiters

University of Pennsylvania

1.
Radeschi, Marco.
Low Dimensional Singular *Riemannian* Foliations in Spheres.

Degree: 2012, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/563

► Singular *Riemannian* Foliations are particular types of foliations on *Riemannian* *manifolds*, in which leaves locally stay at a constant distance from each other. Singular *Riemannian*…
(more)

Subjects/Keywords: Foliations; Riemannian geometry; Riemannian manifolds; Spheres; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Radeschi, M. (2012). Low Dimensional Singular Riemannian Foliations in Spheres. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/563

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Thesis, University of Pennsylvania. Accessed September 19, 2020. https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Web. 19 Sep 2020.

Vancouver:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Internet] [Thesis]. University of Pennsylvania; 2012. [cited 2020 Sep 19]. Available from: https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Thesis]. University of Pennsylvania; 2012. Available from: https://repository.upenn.edu/edissertations/563

Not specified: Masters Thesis or Doctoral Dissertation

Oregon State University

2.
Ultman, Shari K.
The cohomology rings of seven dimensional primitive cohomogeneity one * manifolds*.

Degree: PhD, Mathematics, 2009, Oregon State University

URL: http://hdl.handle.net/1957/11164

► A striking feature in the study of *Riemannian* *manifolds* of positive sectional curvature is the narrowness of the collection of known examples. In this thesis,…
(more)

Subjects/Keywords: positive sectional curvature; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ultman, S. K. (2009). The cohomology rings of seven dimensional primitive cohomogeneity one manifolds. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/11164

Chicago Manual of Style (16^{th} Edition):

Ultman, Shari K. “The cohomology rings of seven dimensional primitive cohomogeneity one manifolds.” 2009. Doctoral Dissertation, Oregon State University. Accessed September 19, 2020. http://hdl.handle.net/1957/11164.

MLA Handbook (7^{th} Edition):

Ultman, Shari K. “The cohomology rings of seven dimensional primitive cohomogeneity one manifolds.” 2009. Web. 19 Sep 2020.

Vancouver:

Ultman SK. The cohomology rings of seven dimensional primitive cohomogeneity one manifolds. [Internet] [Doctoral dissertation]. Oregon State University; 2009. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1957/11164.

Council of Science Editors:

Ultman SK. The cohomology rings of seven dimensional primitive cohomogeneity one manifolds. [Doctoral Dissertation]. Oregon State University; 2009. Available from: http://hdl.handle.net/1957/11164

Texas Tech University

3. Marlow, Chad Troy. Experimentation with control in a curved space.

Degree: Mathematics, 1998, Texas Tech University

URL: http://hdl.handle.net/2346/11918

The purpose oF this paper is to discuss the nature oF movement in a curved space with limited control. A system oF equations is derived and studied. A user-driven simulation is given that applies the developed model to the three-dimensional Heisenberg group.

Subjects/Keywords: Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marlow, C. T. (1998). Experimentation with control in a curved space. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/11918

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Marlow, Chad Troy. “Experimentation with control in a curved space.” 1998. Thesis, Texas Tech University. Accessed September 19, 2020. http://hdl.handle.net/2346/11918.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Marlow, Chad Troy. “Experimentation with control in a curved space.” 1998. Web. 19 Sep 2020.

Vancouver:

Marlow CT. Experimentation with control in a curved space. [Internet] [Thesis]. Texas Tech University; 1998. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/2346/11918.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marlow CT. Experimentation with control in a curved space. [Thesis]. Texas Tech University; 1998. Available from: http://hdl.handle.net/2346/11918

Not specified: Masters Thesis or Doctoral Dissertation

4.
Akhlad Iqbal.
A study of the generalized convexities on *Riemannian*
*manifolds*; -.

Degree: Mathematics, 2013, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/12923

Subjects/Keywords: Riemannian Manifolds; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Iqbal, A. (2013). A study of the generalized convexities on Riemannian manifolds; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/12923

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Iqbal, Akhlad. “A study of the generalized convexities on Riemannian manifolds; -.” 2013. Thesis, Aligarh Muslim University. Accessed September 19, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/12923.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Iqbal, Akhlad. “A study of the generalized convexities on Riemannian manifolds; -.” 2013. Web. 19 Sep 2020.

Vancouver:

Iqbal A. A study of the generalized convexities on Riemannian manifolds; -. [Internet] [Thesis]. Aligarh Muslim University; 2013. [cited 2020 Sep 19]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/12923.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Iqbal A. A study of the generalized convexities on Riemannian manifolds; -. [Thesis]. Aligarh Muslim University; 2013. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/12923

Not specified: Masters Thesis or Doctoral Dissertation

5. Leonardo Tavares de Oliveira. Sobre teorema de comparaÃÃo de autovalores de Cheng.

Degree: Master, 2012, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754 ;

►

We present a version of Chengâs Eigenvalue Comparison Theorem, where the limitation of the sectional and Ricci curvature is changed by limiting the mean curvature… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades riemanianas; riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliveira, L. T. d. (2012). Sobre teorema de comparaÃÃo de autovalores de Cheng. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754 ;

Chicago Manual of Style (16^{th} Edition):

Oliveira, Leonardo Tavares de. “Sobre teorema de comparaÃÃo de autovalores de Cheng.” 2012. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754 ;.

MLA Handbook (7^{th} Edition):

Oliveira, Leonardo Tavares de. “Sobre teorema de comparaÃÃo de autovalores de Cheng.” 2012. Web. 19 Sep 2020.

Vancouver:

Oliveira LTd. Sobre teorema de comparaÃÃo de autovalores de Cheng. [Internet] [Masters thesis]. Universidade Federal do Ceará 2012. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754 ;.

Council of Science Editors:

Oliveira LTd. Sobre teorema de comparaÃÃo de autovalores de Cheng. [Masters Thesis]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754 ;

University of Oklahoma

6.
Jorque, Benigno Ballesteros.
Quasi-orthonormal frames on semi-*Riemannian* n-* manifolds*.

Degree: PhD, Department of Mathematics, 1971, University of Oklahoma

URL: http://hdl.handle.net/11244/3116

Subjects/Keywords: Mathematics.; Riemannian manifolds.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jorque, B. B. (1971). Quasi-orthonormal frames on semi-Riemannian n-manifolds. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/3116

Chicago Manual of Style (16^{th} Edition):

Jorque, Benigno Ballesteros. “Quasi-orthonormal frames on semi-Riemannian n-manifolds.” 1971. Doctoral Dissertation, University of Oklahoma. Accessed September 19, 2020. http://hdl.handle.net/11244/3116.

MLA Handbook (7^{th} Edition):

Jorque, Benigno Ballesteros. “Quasi-orthonormal frames on semi-Riemannian n-manifolds.” 1971. Web. 19 Sep 2020.

Vancouver:

Jorque BB. Quasi-orthonormal frames on semi-Riemannian n-manifolds. [Internet] [Doctoral dissertation]. University of Oklahoma; 1971. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11244/3116.

Council of Science Editors:

Jorque BB. Quasi-orthonormal frames on semi-Riemannian n-manifolds. [Doctoral Dissertation]. University of Oklahoma; 1971. Available from: http://hdl.handle.net/11244/3116

Australian National University

7.
Faraki, Masoud.
The Role of *Riemannian* *Manifolds* in Computer Vision: From Coding to Deep Metric Learning
.

Degree: 2018, Australian National University

URL: http://hdl.handle.net/1885/142557

► A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to…
(more)

Subjects/Keywords: Riemannian manifolds; Coding; Metric Learning; Deep learning

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Faraki, M. (2018). The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/142557

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Faraki, Masoud. “The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning .” 2018. Thesis, Australian National University. Accessed September 19, 2020. http://hdl.handle.net/1885/142557.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Faraki, Masoud. “The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning .” 2018. Web. 19 Sep 2020.

Vancouver:

Faraki M. The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning . [Internet] [Thesis]. Australian National University; 2018. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1885/142557.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Faraki M. The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning . [Thesis]. Australian National University; 2018. Available from: http://hdl.handle.net/1885/142557

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

8. Wang, Wei. Entropy zero system and Morse-Smale systems.

Degree: PhD, Department of Mathematics, 1997, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:26875

Subjects/Keywords: Diffeomorphisms; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, W. (1997). Entropy zero system and Morse-Smale systems. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:26875

Chicago Manual of Style (16^{th} Edition):

Wang, Wei. “Entropy zero system and Morse-Smale systems.” 1997. Doctoral Dissertation, Michigan State University. Accessed September 19, 2020. http://etd.lib.msu.edu/islandora/object/etd:26875.

MLA Handbook (7^{th} Edition):

Wang, Wei. “Entropy zero system and Morse-Smale systems.” 1997. Web. 19 Sep 2020.

Vancouver:

Wang W. Entropy zero system and Morse-Smale systems. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Sep 19]. Available from: http://etd.lib.msu.edu/islandora/object/etd:26875.

Council of Science Editors:

Wang W. Entropy zero system and Morse-Smale systems. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:26875

University of Oklahoma

9. Li, Ye. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.

Degree: PhD, 2012, University of Oklahoma

URL: http://hdl.handle.net/11244/319402

► Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched *manifolds* and point out a possible value of the…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319402

Chicago Manual of Style (16^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 19, 2020. http://hdl.handle.net/11244/319402.

MLA Handbook (7^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 19 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11244/319402.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/319402

University of Oklahoma

10. Li, Ye. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.

Degree: PhD, 2012, University of Oklahoma

URL: http://hdl.handle.net/11244/318451

► Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched *manifolds* and point out a possible value of the…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318451

Chicago Manual of Style (16^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 19, 2020. http://hdl.handle.net/11244/318451.

MLA Handbook (7^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 19 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11244/318451.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/318451

Massey University

11.
Senarath, Padma.
Fundamentals of *Riemannian* geometry and its evolution.

Degree: MS, Mathematics, 2000, Massey University

URL: http://hdl.handle.net/10179/12631

► In this thesis we study the theory of *Riemannian* *manifolds*: these are smooth *manifolds* equipped with *Riemannian* metrics, which allow one to measure geometric quantities…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Senarath, P. (2000). Fundamentals of Riemannian geometry and its evolution. (Masters Thesis). Massey University. Retrieved from http://hdl.handle.net/10179/12631

Chicago Manual of Style (16^{th} Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Masters Thesis, Massey University. Accessed September 19, 2020. http://hdl.handle.net/10179/12631.

MLA Handbook (7^{th} Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Web. 19 Sep 2020.

Vancouver:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Internet] [Masters thesis]. Massey University; 2000. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/10179/12631.

Council of Science Editors:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Masters Thesis]. Massey University; 2000. Available from: http://hdl.handle.net/10179/12631

California State University – San Bernardino

12.
Botros, Amir A.
GEODESICS IN LORENTZIAN * MANIFOLDS*.

Degree: MAin Mathematics, Mathematics, 2016, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd/275

► We present an extension of Geodesics in Lorentzian *Manifolds* (Semi-*Riemannian* *Manifolds* or pseudo-*Riemannian* *Manifolds* ). A geodesic on a *Riemannian* manifold is, locally, a…
(more)

Subjects/Keywords: geodesic completeness; Lorentzian manifolds; pseudo-Riemannian manifolds; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Botros, A. A. (2016). GEODESICS IN LORENTZIAN MANIFOLDS. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/275

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Thesis, California State University – San Bernardino. Accessed September 19, 2020. https://scholarworks.lib.csusb.edu/etd/275.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Web. 19 Sep 2020.

Vancouver:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Internet] [Thesis]. California State University – San Bernardino; 2016. [cited 2020 Sep 19]. Available from: https://scholarworks.lib.csusb.edu/etd/275.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Thesis]. California State University – San Bernardino; 2016. Available from: https://scholarworks.lib.csusb.edu/etd/275

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

13. Vernon, Michael H. Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time.

Degree: PhD, Department of Mathematics, 1985, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:45952

Subjects/Keywords: Manifolds (Mathematics); Hypersurfaces; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vernon, M. H. (1985). Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:45952

Chicago Manual of Style (16^{th} Edition):

Vernon, Michael H. “Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time.” 1985. Doctoral Dissertation, Michigan State University. Accessed September 19, 2020. http://etd.lib.msu.edu/islandora/object/etd:45952.

MLA Handbook (7^{th} Edition):

Vernon, Michael H. “Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time.” 1985. Web. 19 Sep 2020.

Vancouver:

Vernon MH. Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time. [Internet] [Doctoral dissertation]. Michigan State University; 1985. [cited 2020 Sep 19]. Available from: http://etd.lib.msu.edu/islandora/object/etd:45952.

Council of Science Editors:

Vernon MH. Some isoparametric hypersurfaces of a complex hyperbolic space and their counterparts in anti-de sitter space time. [Doctoral Dissertation]. Michigan State University; 1985. Available from: http://etd.lib.msu.edu/islandora/object/etd:45952

Indian Institute of Science

14.
Maity, Soma.
On the Stability of Certain *Riemannian* Functionals.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3230

► Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a *Riemannian* functional on the space…
(more)

Subjects/Keywords: Riemannian Geometry; Ricci Curvature; Curvature (Mathematics); Riemannian Manifolds; Riemannian Functionals; Riemannain Metrics; Riemannian Metric; Space Forms; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Maity, S. (2018). On the Stability of Certain Riemannian Functionals. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3230

Chicago Manual of Style (16^{th} Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed September 19, 2020. http://etd.iisc.ac.in/handle/2005/3230.

MLA Handbook (7^{th} Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Web. 19 Sep 2020.

Vancouver:

Maity S. On the Stability of Certain Riemannian Functionals. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Sep 19]. Available from: http://etd.iisc.ac.in/handle/2005/3230.

Council of Science Editors:

Maity S. On the Stability of Certain Riemannian Functionals. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3230

15. Francisco Calvi da Cruz Junior. FolheaÃÃes completas de formas espaciais por hipersuperfÃcies.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5495 ;

►

Estudamos folheaÃÃes de formas espaciais por hipersuperfÃcies completas, sob certas condiÃÃes sobre as suas curvaturas mÃdias de ordem superior. Em particular, no espaÃo euclidiano obtemos… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Riemannian manifolds; variedades diferenciais; folheaÃÃes(matemÃtica); variedades riemanianas; differentiable manifolds ; foliations(mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Junior, F. C. d. C. (2010). FolheaÃÃes completas de formas espaciais por hipersuperfÃcies. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5495 ;

Chicago Manual of Style (16^{th} Edition):

Junior, Francisco Calvi da Cruz. “FolheaÃÃes completas de formas espaciais por hipersuperfÃcies.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5495 ;.

MLA Handbook (7^{th} Edition):

Junior, Francisco Calvi da Cruz. “FolheaÃÃes completas de formas espaciais por hipersuperfÃcies.” 2010. Web. 19 Sep 2020.

Vancouver:

Junior FCdC. FolheaÃÃes completas de formas espaciais por hipersuperfÃcies. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5495 ;.

Council of Science Editors:

Junior FCdC. FolheaÃÃes completas de formas espaciais por hipersuperfÃcies. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5495 ;

16. AntÃnia Jocivania Pinheiro. HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5498 ;

►

Neste trabalho, definimos as transformaÃÃes de Newton e provamos algumas propriedades relacionadas a elas. Fizemos um estudo sobre operador elÃptico e usamos isso para provar… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Riemannian manifolds; variedades diferenciais; hipersuperfÃcies; variedades riemanianas; differentiable manifolds ; hypersurfaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pinheiro, A. J. (2010). HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5498 ;

Chicago Manual of Style (16^{th} Edition):

Pinheiro, AntÃnia Jocivania. “HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5498 ;.

MLA Handbook (7^{th} Edition):

Pinheiro, AntÃnia Jocivania. “HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R.” 2010. Web. 19 Sep 2020.

Vancouver:

Pinheiro AJ. HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5498 ;.

Council of Science Editors:

Pinheiro AJ. HipersuperfÃcies com r-Ãsima curvatura mÃdia constante positiva em Mm X R. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5498 ;

17. Jonatan Floriano da Silva. Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas.

Degree: PhD, 2011, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5911 ;

►

Este trabalho consiste em duas partes. Na primeira parte, estudaremos hipersuperfÃcies compactas sem bordo imersas no espaÃo Euclidiano com o quociente das curvaturas mÃdias anisotrÃpicas… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades(matemÃtica); difeomorfismos; variedades riemanianas; manifolds(mathematics); diffeomorphisms; riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Silva, J. F. d. (2011). Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5911 ;

Chicago Manual of Style (16^{th} Edition):

Silva, Jonatan Floriano da. “Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas.” 2011. Doctoral Dissertation, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5911 ;.

MLA Handbook (7^{th} Edition):

Silva, Jonatan Floriano da. “Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas.” 2011. Web. 19 Sep 2020.

Vancouver:

Silva JFd. Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2011. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5911 ;.

Council of Science Editors:

Silva JFd. Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas. [Doctoral Dissertation]. Universidade Federal do Ceará 2011. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5911 ;

Indian Institute of Science

18. Gururaja, H A. Ricci Flow And Isotropic Curvature.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/2376

► This thesis consists of two parts. In the first part, we study certain Ricci flow invariant nonnegative curvature conditions as given by B. Wilking. We…
(more)

Subjects/Keywords: Ricci Flow; Riemannian Manifolds; Manifolds (Mathematics); Curvature; Isotropic Curvature; S−curvature; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gururaja, H. A. (2014). Ricci Flow And Isotropic Curvature. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2376

Chicago Manual of Style (16^{th} Edition):

Gururaja, H A. “Ricci Flow And Isotropic Curvature.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed September 19, 2020. http://etd.iisc.ac.in/handle/2005/2376.

MLA Handbook (7^{th} Edition):

Gururaja, H A. “Ricci Flow And Isotropic Curvature.” 2014. Web. 19 Sep 2020.

Vancouver:

Gururaja HA. Ricci Flow And Isotropic Curvature. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2020 Sep 19]. Available from: http://etd.iisc.ac.in/handle/2005/2376.

Council of Science Editors:

Gururaja HA. Ricci Flow And Isotropic Curvature. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2376

University of Georgia

19. Berglund, Michael William. Bounding expected values on random polygons.

Degree: 2014, University of Georgia

URL: http://hdl.handle.net/10724/30298

► Random walks of various types have been studied for more than a century. Recently, a new measure on the space of fi xed total length…
(more)

Subjects/Keywords: Closed random walk; statistics on Riemannian manifolds; random knot; random polygon

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Berglund, M. W. (2014). Bounding expected values on random polygons. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/30298

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Berglund, Michael William. “Bounding expected values on random polygons.” 2014. Thesis, University of Georgia. Accessed September 19, 2020. http://hdl.handle.net/10724/30298.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Berglund, Michael William. “Bounding expected values on random polygons.” 2014. Web. 19 Sep 2020.

Vancouver:

Berglund MW. Bounding expected values on random polygons. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/10724/30298.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Berglund MW. Bounding expected values on random polygons. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/30298

Not specified: Masters Thesis or Doctoral Dissertation

20. Tiago MendonÃa Lucena de Veras. Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere.

Degree: Master, 2011, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 ;

►

Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos,… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades riemanianas; autovalores; Riemannian manifolds; eigenvalues

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Veras, T. M. L. d. (2011). Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 ;

Chicago Manual of Style (16^{th} Edition):

Veras, Tiago MendonÃa Lucena de. “Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere.” 2011. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 ;.

MLA Handbook (7^{th} Edition):

Veras, Tiago MendonÃa Lucena de. “Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere.” 2011. Web. 19 Sep 2020.

Vancouver:

Veras TMLd. Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere. [Internet] [Masters thesis]. Universidade Federal do Ceará 2011. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 ;.

Council of Science Editors:

Veras TMLd. Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere. [Masters Thesis]. Universidade Federal do Ceará 2011. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 ;

University of Pennsylvania

21.
Brooks, Thomas Gunnison.
* Riemannian* Geometry Of The Curvature Tensor.

Degree: 2018, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/2872

► The curvature tensor is the most important isometry invariant of a *Riemannian* metric. We study several related conditions on the curvature tensor to obtain topological…
(more)

Subjects/Keywords: curvature homogeneity; manifolds; nullity of curvature; Ricci eigenvalues; Riemannian geometry; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brooks, T. G. (2018). Riemannian Geometry Of The Curvature Tensor. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2872

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Thesis, University of Pennsylvania. Accessed September 19, 2020. https://repository.upenn.edu/edissertations/2872.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Web. 19 Sep 2020.

Vancouver:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Internet] [Thesis]. University of Pennsylvania; 2018. [cited 2020 Sep 19]. Available from: https://repository.upenn.edu/edissertations/2872.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Thesis]. University of Pennsylvania; 2018. Available from: https://repository.upenn.edu/edissertations/2872

Not specified: Masters Thesis or Doctoral Dissertation

22. JosÃ Deibsom da Silva. Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5109 ;

►

Apresentamos uma extensÃo do Teorema de Barta devido a G. P. Bessa and J. F. Montenegro e fazemos algumas aplicaÃÃes geomÃtricas do resultado obtido. A… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Dirichlet, Problemas de; Riemannian manifolds; Variedades riemanianas; Dirichlet problem

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Silva, J. D. d. (2010). Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5109 ;

Chicago Manual of Style (16^{th} Edition):

Silva, JosÃ Deibsom da. “Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5109 ;.

MLA Handbook (7^{th} Edition):

Silva, JosÃ Deibsom da. “Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas.” 2010. Web. 19 Sep 2020.

Vancouver:

Silva JDd. Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5109 ;.

Council of Science Editors:

Silva JDd. Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5109 ;

23. Leon Denis da Silva. Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5100 ;

►

Obtemos limites inferiores para o tom fundamental de conjuntos abertos em subvariedades com curvatura mÃdia localmente limitada no espaÃo produto N x R, onde N… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades riemanianas; superfÃcies mÃnimas; riemannian manifolds; minimal surfaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Silva, L. D. d. (2010). Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5100 ;

Chicago Manual of Style (16^{th} Edition):

Silva, Leon Denis da. “Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5100 ;.

MLA Handbook (7^{th} Edition):

Silva, Leon Denis da. “Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R.” 2010. Web. 19 Sep 2020.

Vancouver:

Silva LDd. Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5100 ;.

Council of Science Editors:

Silva LDd. Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5100 ;

24. Filipe MendonÃa de Lima. Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5098 ;

►

O objetivo desse trabalho Ã mostrar estimativas superiores para o menor autovalor nÃo-nulo lambda1 do operador de Laplace-Beltrami delta. Os resultados que se seguem foram… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; variedades riemanianas; curvatura; riemannian manifolds; curvature

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lima, F. M. d. (2010). Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5098 ;

Chicago Manual of Style (16^{th} Edition):

Lima, Filipe MendonÃa de. “Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed September 19, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5098 ;.

MLA Handbook (7^{th} Edition):

Lima, Filipe MendonÃa de. “Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies.” 2010. Web. 19 Sep 2020.

Vancouver:

Lima FMd. Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Sep 19]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5098 ;.

Council of Science Editors:

Lima FMd. Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5098 ;

25. Wang, Yunpeng, 1982-. Asymptotic behavior of solutions to the conformal quotient equation.

Degree: Mathematics, 2013, Rutgers University

URL: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068998

Subjects/Keywords: Conformal geometry; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, Yunpeng, 1. (2013). Asymptotic behavior of solutions to the conformal quotient equation. (Thesis). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068998

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wang, Yunpeng, 1982-. “Asymptotic behavior of solutions to the conformal quotient equation.” 2013. Thesis, Rutgers University. Accessed September 19, 2020. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068998.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wang, Yunpeng, 1982-. “Asymptotic behavior of solutions to the conformal quotient equation.” 2013. Web. 19 Sep 2020.

Vancouver:

Wang, Yunpeng 1. Asymptotic behavior of solutions to the conformal quotient equation. [Internet] [Thesis]. Rutgers University; 2013. [cited 2020 Sep 19]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068998.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang, Yunpeng 1. Asymptotic behavior of solutions to the conformal quotient equation. [Thesis]. Rutgers University; 2013. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000068998

Not specified: Masters Thesis or Doctoral Dissertation

Rutgers University

26.
Tuzel, Cuneyt Oncel.
Learning on *Riemannian* *manifolds* for interpretation of visual environments.

Degree: Computer Science, 2008, Rutgers University

URL: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050463

Subjects/Keywords: Computer vision; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tuzel, C. O. (2008). Learning on Riemannian manifolds for interpretation of visual environments. (Thesis). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050463

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Tuzel, Cuneyt Oncel. “Learning on Riemannian manifolds for interpretation of visual environments.” 2008. Thesis, Rutgers University. Accessed September 19, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050463.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Tuzel, Cuneyt Oncel. “Learning on Riemannian manifolds for interpretation of visual environments.” 2008. Web. 19 Sep 2020.

Vancouver:

Tuzel CO. Learning on Riemannian manifolds for interpretation of visual environments. [Internet] [Thesis]. Rutgers University; 2008. [cited 2020 Sep 19]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050463.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tuzel CO. Learning on Riemannian manifolds for interpretation of visual environments. [Thesis]. Rutgers University; 2008. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000050463

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

27.
Chen, Yuanlong.
Strichartz estimates for the wave equation on *Riemannian* *manifolds* of bounded curvature.

Degree: PhD, 2017, University of Washington

URL: http://hdl.handle.net/1773/40635

► Wave packet methods have proven to be a useful tool for the study of dispersive effects of the wave equation with coefficients of limited differentiability.…
(more)

Subjects/Keywords: Low regularity metrics; Riemannian manifolds; Strichartz estimates; Wave equations; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, Y. (2017). Strichartz estimates for the wave equation on Riemannian manifolds of bounded curvature. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/40635

Chicago Manual of Style (16^{th} Edition):

Chen, Yuanlong. “Strichartz estimates for the wave equation on Riemannian manifolds of bounded curvature.” 2017. Doctoral Dissertation, University of Washington. Accessed September 19, 2020. http://hdl.handle.net/1773/40635.

MLA Handbook (7^{th} Edition):

Chen, Yuanlong. “Strichartz estimates for the wave equation on Riemannian manifolds of bounded curvature.” 2017. Web. 19 Sep 2020.

Vancouver:

Chen Y. Strichartz estimates for the wave equation on Riemannian manifolds of bounded curvature. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1773/40635.

Council of Science Editors:

Chen Y. Strichartz estimates for the wave equation on Riemannian manifolds of bounded curvature. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/40635

Texas Tech University

28. Mooningham, John William. Holomorphic extension for certain non-CR-submanifolds.

Degree: Mathematics, 1974, Texas Tech University

URL: http://hdl.handle.net/2346/11517

Subjects/Keywords: Analytic functions; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mooningham, J. W. (1974). Holomorphic extension for certain non-CR-submanifolds. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/11517

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mooningham, John William. “Holomorphic extension for certain non-CR-submanifolds.” 1974. Thesis, Texas Tech University. Accessed September 19, 2020. http://hdl.handle.net/2346/11517.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mooningham, John William. “Holomorphic extension for certain non-CR-submanifolds.” 1974. Web. 19 Sep 2020.

Vancouver:

Mooningham JW. Holomorphic extension for certain non-CR-submanifolds. [Internet] [Thesis]. Texas Tech University; 1974. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/2346/11517.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mooningham JW. Holomorphic extension for certain non-CR-submanifolds. [Thesis]. Texas Tech University; 1974. Available from: http://hdl.handle.net/2346/11517

Not specified: Masters Thesis or Doctoral Dissertation

University of New South Wales

29.
Smith, Geoffrey Howard.
Analytic extension of *Riemannian* * manifolds*.

Degree: Science. Mathematics, 1977, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/65848 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:65619/SOURCE01?view=true

Subjects/Keywords: Riemannian manifolds; Thesis Digitisation Program

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Smith, G. H. (1977). Analytic extension of Riemannian manifolds. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/65848 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:65619/SOURCE01?view=true

Chicago Manual of Style (16^{th} Edition):

Smith, Geoffrey Howard. “Analytic extension of Riemannian manifolds.” 1977. Doctoral Dissertation, University of New South Wales. Accessed September 19, 2020. http://handle.unsw.edu.au/1959.4/65848 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:65619/SOURCE01?view=true.

MLA Handbook (7^{th} Edition):

Smith, Geoffrey Howard. “Analytic extension of Riemannian manifolds.” 1977. Web. 19 Sep 2020.

Vancouver:

Smith GH. Analytic extension of Riemannian manifolds. [Internet] [Doctoral dissertation]. University of New South Wales; 1977. [cited 2020 Sep 19]. Available from: http://handle.unsw.edu.au/1959.4/65848 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:65619/SOURCE01?view=true.

Council of Science Editors:

Smith GH. Analytic extension of Riemannian manifolds. [Doctoral Dissertation]. University of New South Wales; 1977. Available from: http://handle.unsw.edu.au/1959.4/65848 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:65619/SOURCE01?view=true

Universidade Estadual de Campinas

30. Sperança, Llohann Dallagnol, 1986-. Geometria e topologia de cobordos: Geometry and topology of cobondaries.

Degree: 2012, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

► Abstract: In this work we study the geometry and topology of *manifolds* homemorphic, but not diffeomorphic, to the standard sphere Sn, the so called exotic…
(more)

Subjects/Keywords: Topologia diferencial; Difeomorfismos; Submersões riemanianas; Variedades riemanianas; Geometria diferencial; Differential topology; Diffeomorphisms; Riemannian submersions; Riemannian manifolds; Differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sperança, Llohann Dallagnol, 1. (2012). Geometria e topologia de cobordos: Geometry and topology of cobondaries. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sperança, Llohann Dallagnol, 1986-. “Geometria e topologia de cobordos: Geometry and topology of cobondaries.” 2012. Thesis, Universidade Estadual de Campinas. Accessed September 19, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sperança, Llohann Dallagnol, 1986-. “Geometria e topologia de cobordos: Geometry and topology of cobondaries.” 2012. Web. 19 Sep 2020.

Vancouver:

Sperança, Llohann Dallagnol 1. Geometria e topologia de cobordos: Geometry and topology of cobondaries. [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2020 Sep 19]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sperança, Llohann Dallagnol 1. Geometria e topologia de cobordos: Geometry and topology of cobondaries. [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262

Not specified: Masters Thesis or Doctoral Dissertation