Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Ricci Curvature). Showing records 1 – 30 of 34 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


University of California – Riverside

1. Willett, Robert James. Volume Comparison, Ricci Curvature, and Focal Radius.

Degree: Mathematics, 2016, University of California – Riverside

 In this paper, we seek to provide counter examples to two volume comparison lemmas found in if we generalize their assumptions to a lower Ricci(more)

Subjects/Keywords: Mathematics; Focal Radius; Ricci Curvature; Volume

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Willett, R. J. (2016). Volume Comparison, Ricci Curvature, and Focal Radius. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/6fv7p1nb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Willett, Robert James. “Volume Comparison, Ricci Curvature, and Focal Radius.” 2016. Thesis, University of California – Riverside. Accessed November 27, 2020. http://www.escholarship.org/uc/item/6fv7p1nb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Willett, Robert James. “Volume Comparison, Ricci Curvature, and Focal Radius.” 2016. Web. 27 Nov 2020.

Vancouver:

Willett RJ. Volume Comparison, Ricci Curvature, and Focal Radius. [Internet] [Thesis]. University of California – Riverside; 2016. [cited 2020 Nov 27]. Available from: http://www.escholarship.org/uc/item/6fv7p1nb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Willett RJ. Volume Comparison, Ricci Curvature, and Focal Radius. [Thesis]. University of California – Riverside; 2016. Available from: http://www.escholarship.org/uc/item/6fv7p1nb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

2. Yen-Chang Huang. Singular solutions of the sigma_k equations</h1>.

Degree: Mathematics, 2011, University of Notre Dame

  In this thesis, we study the boundary-blow-up problem for the negative σk-Ricci equations in bounded domains of Rn. By adopting the method of Loewner-Nirenberg… (more)

Subjects/Keywords: sigma_k equation; codimension; Ricci curvature; conformal

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, Y. (2011). Singular solutions of the sigma_k equations</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/6w924b31b4f

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huang, Yen-Chang. “Singular solutions of the sigma_k equations</h1>.” 2011. Thesis, University of Notre Dame. Accessed November 27, 2020. https://curate.nd.edu/show/6w924b31b4f.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huang, Yen-Chang. “Singular solutions of the sigma_k equations</h1>.” 2011. Web. 27 Nov 2020.

Vancouver:

Huang Y. Singular solutions of the sigma_k equations</h1>. [Internet] [Thesis]. University of Notre Dame; 2011. [cited 2020 Nov 27]. Available from: https://curate.nd.edu/show/6w924b31b4f.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huang Y. Singular solutions of the sigma_k equations</h1>. [Thesis]. University of Notre Dame; 2011. Available from: https://curate.nd.edu/show/6w924b31b4f

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


IUPUI

3. Marcal, Patricia. Ricci Curvature of Finsler Metrics by Warped Product.

Degree: 2020, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

In the present work, we consider a class of Finsler metrics using the warped product notion introduced by B. Chen,… (more)

Subjects/Keywords: Warped Product; Finsler Metrics; Ricci Curvature; Ricci flat

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marcal, P. (2020). Ricci Curvature of Finsler Metrics by Warped Product. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/22680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Marcal, Patricia. “Ricci Curvature of Finsler Metrics by Warped Product.” 2020. Thesis, IUPUI. Accessed November 27, 2020. http://hdl.handle.net/1805/22680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Marcal, Patricia. “Ricci Curvature of Finsler Metrics by Warped Product.” 2020. Web. 27 Nov 2020.

Vancouver:

Marcal P. Ricci Curvature of Finsler Metrics by Warped Product. [Internet] [Thesis]. IUPUI; 2020. [cited 2020 Nov 27]. Available from: http://hdl.handle.net/1805/22680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marcal P. Ricci Curvature of Finsler Metrics by Warped Product. [Thesis]. IUPUI; 2020. Available from: http://hdl.handle.net/1805/22680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

4. Brooks, Thomas Gunnison. Riemannian Geometry Of The Curvature Tensor.

Degree: 2018, University of Pennsylvania

 The curvature tensor is the most important isometry invariant of a Riemannian metric. We study several related conditions on the curvature tensor to obtain topological… (more)

Subjects/Keywords: curvature homogeneity; manifolds; nullity of curvature; Ricci eigenvalues; Riemannian geometry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brooks, T. G. (2018). Riemannian Geometry Of The Curvature Tensor. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Thesis, University of Pennsylvania. Accessed November 27, 2020. https://repository.upenn.edu/edissertations/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Web. 27 Nov 2020.

Vancouver:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Internet] [Thesis]. University of Pennsylvania; 2018. [cited 2020 Nov 27]. Available from: https://repository.upenn.edu/edissertations/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Thesis]. University of Pennsylvania; 2018. Available from: https://repository.upenn.edu/edissertations/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

5. Gururaja, H A. Ricci Flow And Isotropic Curvature.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

 This thesis consists of two parts. In the first part, we study certain Ricci flow invariant nonnegative curvature conditions as given by B. Wilking. We… (more)

Subjects/Keywords: Ricci Flow; Riemannian Manifolds; Manifolds (Mathematics); Curvature; Isotropic Curvature; S−curvature; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gururaja, H. A. (2014). Ricci Flow And Isotropic Curvature. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2376

Chicago Manual of Style (16th Edition):

Gururaja, H A. “Ricci Flow And Isotropic Curvature.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed November 27, 2020. http://etd.iisc.ac.in/handle/2005/2376.

MLA Handbook (7th Edition):

Gururaja, H A. “Ricci Flow And Isotropic Curvature.” 2014. Web. 27 Nov 2020.

Vancouver:

Gururaja HA. Ricci Flow And Isotropic Curvature. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2020 Nov 27]. Available from: http://etd.iisc.ac.in/handle/2005/2376.

Council of Science Editors:

Gururaja HA. Ricci Flow And Isotropic Curvature. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2376

6. Hochard, Raphaël. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.

Degree: Docteur es, Mathématiques Pures, 2019, Bordeaux

 Le flot de Ricci est une équation aux dérivées partielles qui régit l’évolution d’une métrique riemannienne dépendant d’un paramètre de temps sur une variété différentielle.… (more)

Subjects/Keywords: Flot de Ricci; Geometrie Riemannienne; Courbure de Ricci minorée; Espace métriques singuliers; Analyse géométrique; Ricci Flow; Riemannian geometry; Ricci curvature bounded from below; Ricci limit spaces; Geometric analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hochard, R. (2019). Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2019BORD0006

Chicago Manual of Style (16th Edition):

Hochard, Raphaël. “Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.” 2019. Doctoral Dissertation, Bordeaux. Accessed November 27, 2020. http://www.theses.fr/2019BORD0006.

MLA Handbook (7th Edition):

Hochard, Raphaël. “Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.” 2019. Web. 27 Nov 2020.

Vancouver:

Hochard R. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. [Internet] [Doctoral dissertation]. Bordeaux; 2019. [cited 2020 Nov 27]. Available from: http://www.theses.fr/2019BORD0006.

Council of Science Editors:

Hochard R. Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. : Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below. [Doctoral Dissertation]. Bordeaux; 2019. Available from: http://www.theses.fr/2019BORD0006


Delft University of Technology

7. Versendaal, R. (author). The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below.

Degree: 2016, Delft University of Technology

We study the Riesz transform and Hodge-Dirac operator on a complete Riemannian manifold with Ricci curvature bounded from below. We define the Hodge-Dirac operator ∏… (more)

Subjects/Keywords: Riesz transform; Riemannian manifold; Hodge-Dirac operator; Ricci curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Versendaal, R. (. (2016). The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:878a94cc-5839-42f4-9ccf-ff48742526ef

Chicago Manual of Style (16th Edition):

Versendaal, R (author). “The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below.” 2016. Masters Thesis, Delft University of Technology. Accessed November 27, 2020. http://resolver.tudelft.nl/uuid:878a94cc-5839-42f4-9ccf-ff48742526ef.

MLA Handbook (7th Edition):

Versendaal, R (author). “The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below.” 2016. Web. 27 Nov 2020.

Vancouver:

Versendaal R(. The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below. [Internet] [Masters thesis]. Delft University of Technology; 2016. [cited 2020 Nov 27]. Available from: http://resolver.tudelft.nl/uuid:878a94cc-5839-42f4-9ccf-ff48742526ef.

Council of Science Editors:

Versendaal R(. The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below. [Masters Thesis]. Delft University of Technology; 2016. Available from: http://resolver.tudelft.nl/uuid:878a94cc-5839-42f4-9ccf-ff48742526ef


University of Toronto

8. Glynn-Adey, Parker James. Width, Ricci Curvature, and Bisecting Surfaces.

Degree: PhD, 2016, University of Toronto

 In this thesis we studied width-volume inequalities, bisecting surfaces in three spheres, and the planar case of Larry Guth's sponge problem. Our main result is… (more)

Subjects/Keywords: conformal geometry; geometric inqualities; homological filling; quantitative geometry; Ricci curvature; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Glynn-Adey, P. J. (2016). Width, Ricci Curvature, and Bisecting Surfaces. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76444

Chicago Manual of Style (16th Edition):

Glynn-Adey, Parker James. “Width, Ricci Curvature, and Bisecting Surfaces.” 2016. Doctoral Dissertation, University of Toronto. Accessed November 27, 2020. http://hdl.handle.net/1807/76444.

MLA Handbook (7th Edition):

Glynn-Adey, Parker James. “Width, Ricci Curvature, and Bisecting Surfaces.” 2016. Web. 27 Nov 2020.

Vancouver:

Glynn-Adey PJ. Width, Ricci Curvature, and Bisecting Surfaces. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Nov 27]. Available from: http://hdl.handle.net/1807/76444.

Council of Science Editors:

Glynn-Adey PJ. Width, Ricci Curvature, and Bisecting Surfaces. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76444

9. Renato Oliveira Targino. A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais.

Degree: Master, 2011, Universidade Federal do Ceará

Neste trabalho estudamos hipersuperfÃcies mÃnimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o Ãnfimo do valor absoluto da… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; curvatura de Ricci; espaÃo euclidiano; Ricci curvature; Euclidean space; geometria riemaniana; imersÃes(matemÃtica); Riemannian geometry; immersions (mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Targino, R. O. (2011). A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6672 ;

Chicago Manual of Style (16th Edition):

Targino, Renato Oliveira. “A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais.” 2011. Masters Thesis, Universidade Federal do Ceará. Accessed November 27, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6672 ;.

MLA Handbook (7th Edition):

Targino, Renato Oliveira. “A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais.” 2011. Web. 27 Nov 2020.

Vancouver:

Targino RO. A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais. [Internet] [Masters thesis]. Universidade Federal do Ceará 2011. [cited 2020 Nov 27]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6672 ;.

Council of Science Editors:

Targino RO. A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais. [Masters Thesis]. Universidade Federal do Ceará 2011. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6672 ;

10. Veysseire, Laurent. Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes.

Degree: Docteur es, Mathématiques, 2012, Lyon, École normale supérieure

La courbure de Ricci grossière d’un processus markovien sur un espace polonais est définie comme un taux de contraction local de la distance de Wasserstein… (more)

Subjects/Keywords: Courbure de Ricci; Processus markoviens; Trou spectral; Concentration de la mesure; Ricci curvature; Markov processes; Spectral gap; Measure concentration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Veysseire, L. (2012). Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2012ENSL0732

Chicago Manual of Style (16th Edition):

Veysseire, Laurent. “Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes.” 2012. Doctoral Dissertation, Lyon, École normale supérieure. Accessed November 27, 2020. http://www.theses.fr/2012ENSL0732.

MLA Handbook (7th Edition):

Veysseire, Laurent. “Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes.” 2012. Web. 27 Nov 2020.

Vancouver:

Veysseire L. Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2012. [cited 2020 Nov 27]. Available from: http://www.theses.fr/2012ENSL0732.

Council of Science Editors:

Veysseire L. Courbure de Ricci grossière de processus markoviens : Coarse Ricci curvature of Markov processes. [Doctoral Dissertation]. Lyon, École normale supérieure; 2012. Available from: http://www.theses.fr/2012ENSL0732


University of Western Ontario

11. Dong, Rui. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.

Degree: 2019, University of Western Ontario

 In noncommutative geometry, the metric information of a noncommutative space is encoded in the data of a spectral triple (𝓐, \mathcal{H},D), where D plays the… (more)

Subjects/Keywords: Noncommutative Geometry; Spectral Triples; Second Quantization; Spectral Geometry; Differential Geometry; Modified Bessel Functions; Chemical Potential; Entropy; Ricci Curvature; Scalar Curvature; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dong, R. (2019). Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Thesis, University of Western Ontario. Accessed November 27, 2020. https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dong, Rui. “Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization.” 2019. Web. 27 Nov 2020.

Vancouver:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2020 Nov 27]. Available from: https://ir.lib.uwo.ca/etd/6294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong R. Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

12. Maity, Soma. On the Stability of Certain Riemannian Functionals.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a Riemannian functional on the space… (more)

Subjects/Keywords: Riemannian Geometry; Ricci Curvature; Curvature (Mathematics); Riemannian Manifolds; Riemannian Functionals; Riemannain Metrics; Riemannian Metric; Space Forms; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maity, S. (2018). On the Stability of Certain Riemannian Functionals. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3230

Chicago Manual of Style (16th Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed November 27, 2020. http://etd.iisc.ac.in/handle/2005/3230.

MLA Handbook (7th Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Web. 27 Nov 2020.

Vancouver:

Maity S. On the Stability of Certain Riemannian Functionals. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Nov 27]. Available from: http://etd.iisc.ac.in/handle/2005/3230.

Council of Science Editors:

Maity S. On the Stability of Certain Riemannian Functionals. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3230


University of South Carolina

13. Wang, Zhiyu. Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra.

Degree: PhD, Mathematics, 2020, University of South Carolina

  This thesis studies some problems in extremal and probabilistic combinatorics, Ricci curvature of graphs, spectral hypergraph theory and the interplay between these areas. The… (more)

Subjects/Keywords: Mathematics; extremal combinatorics; graph theory; probabilistic methods; Ricci curvature; spectral hypergraph theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Z. (2020). Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/5771

Chicago Manual of Style (16th Edition):

Wang, Zhiyu. “Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra.” 2020. Doctoral Dissertation, University of South Carolina. Accessed November 27, 2020. https://scholarcommons.sc.edu/etd/5771.

MLA Handbook (7th Edition):

Wang, Zhiyu. “Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra.” 2020. Web. 27 Nov 2020.

Vancouver:

Wang Z. Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra. [Internet] [Doctoral dissertation]. University of South Carolina; 2020. [cited 2020 Nov 27]. Available from: https://scholarcommons.sc.edu/etd/5771.

Council of Science Editors:

Wang Z. Connections Between Extremal Combinatorics, Probabilistic Methods, Ricci Curvature of Graphs, and Linear Algebra. [Doctoral Dissertation]. University of South Carolina; 2020. Available from: https://scholarcommons.sc.edu/etd/5771

14. Jaramillo, Maree Trisha Afaga. The Structure of Fundamental Groups of Smooth Metric Measure Spaces.

Degree: 2014, University of California – eScholarship, University of California

 In this dissertation, we investigate the structure of fundamental groups of smooth metric measure spaces with Bakry-Emery Ricci tensor bounded from below. In particular, we… (more)

Subjects/Keywords: Mathematics; Bakry-Emery Ricci Curvature; Differential Geometry; Fundamental Groups; Smooth Metric Measure Spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jaramillo, M. T. A. (2014). The Structure of Fundamental Groups of Smooth Metric Measure Spaces. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/491917d6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jaramillo, Maree Trisha Afaga. “The Structure of Fundamental Groups of Smooth Metric Measure Spaces.” 2014. Thesis, University of California – eScholarship, University of California. Accessed November 27, 2020. http://www.escholarship.org/uc/item/491917d6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jaramillo, Maree Trisha Afaga. “The Structure of Fundamental Groups of Smooth Metric Measure Spaces.” 2014. Web. 27 Nov 2020.

Vancouver:

Jaramillo MTA. The Structure of Fundamental Groups of Smooth Metric Measure Spaces. [Internet] [Thesis]. University of California – eScholarship, University of California; 2014. [cited 2020 Nov 27]. Available from: http://www.escholarship.org/uc/item/491917d6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jaramillo MTA. The Structure of Fundamental Groups of Smooth Metric Measure Spaces. [Thesis]. University of California – eScholarship, University of California; 2014. Available from: http://www.escholarship.org/uc/item/491917d6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oregon

15. Burdick, Bradley. Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings.

Degree: PhD, Department of Mathematics, 2019, University of Oregon

 The classification of simply connected manifolds admitting metrics of positive scalar curvature of initiated by Gromov-Lawson, at its core, relies on a careful geometric construction… (more)

Subjects/Keywords: connected sums; manifolds with corners; positive Ricci curvature; Riemannian geometry; splines; surgery

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Burdick, B. (2019). Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings. (Doctoral Dissertation). University of Oregon. Retrieved from https://scholarsbank.uoregon.edu/xmlui/handle/1794/24879

Chicago Manual of Style (16th Edition):

Burdick, Bradley. “Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings.” 2019. Doctoral Dissertation, University of Oregon. Accessed November 27, 2020. https://scholarsbank.uoregon.edu/xmlui/handle/1794/24879.

MLA Handbook (7th Edition):

Burdick, Bradley. “Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings.” 2019. Web. 27 Nov 2020.

Vancouver:

Burdick B. Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings. [Internet] [Doctoral dissertation]. University of Oregon; 2019. [cited 2020 Nov 27]. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/24879.

Council of Science Editors:

Burdick B. Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings. [Doctoral Dissertation]. University of Oregon; 2019. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/24879


University of Toronto

16. Zhu, Zhifei. Geometric Inequalities on Riemannian Manifolds.

Degree: PhD, 2019, University of Toronto

 In this thesis, we will show three results which partially answer several questions in the field of quantitative geometry. We first show that there exists… (more)

Subjects/Keywords: geodesic; homological filling function; minimal surface; quantitative geometry; Ricci curvature; Riemannian geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhu, Z. (2019). Geometric Inequalities on Riemannian Manifolds. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97754

Chicago Manual of Style (16th Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Doctoral Dissertation, University of Toronto. Accessed November 27, 2020. http://hdl.handle.net/1807/97754.

MLA Handbook (7th Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Web. 27 Nov 2020.

Vancouver:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Nov 27]. Available from: http://hdl.handle.net/1807/97754.

Council of Science Editors:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97754


University of Minnesota

17. Xu, Guoyi. Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds.

Degree: PhD, Mathematics, 2010, University of Minnesota

 This thesis treats two topics about geometric flows. One topic concerns the deformation of hypersurfaces in negatively curved Riemannian manifolds using fully nonlinear parabolic equations… (more)

Subjects/Keywords: Harmonic mean curvature flow; Ricci flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, G. (2010). Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/92915

Chicago Manual of Style (16th Edition):

Xu, Guoyi. “Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds.” 2010. Doctoral Dissertation, University of Minnesota. Accessed November 27, 2020. http://purl.umn.edu/92915.

MLA Handbook (7th Edition):

Xu, Guoyi. “Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds.” 2010. Web. 27 Nov 2020.

Vancouver:

Xu G. Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2010. [cited 2020 Nov 27]. Available from: http://purl.umn.edu/92915.

Council of Science Editors:

Xu G. Harmonic mean curvature flow in Riemannian manifolds and Ricci flow on noncompact manifolds. [Doctoral Dissertation]. University of Minnesota; 2010. Available from: http://purl.umn.edu/92915


Indian Institute of Science

18. Bhattacharya, Atreyee. On an ODE Associated to the Ricci Flow.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 We discuss two topics in this talk. First we study compact Ricci-flat four dimensional manifolds without boundary and obtain point wise restrictions on curvature( not… (more)

Subjects/Keywords: Riemannian Manifolds; Curvature; Ricci Flow; Ricci-Flat 4-Manifolds; Algebraic Curvature Operators; Vector Fields; Ricci-Flat Kahler Surfaces; Riemannian Curvature Operator; Kahler Manifolds; Ordinary Differential Equations; Differential Geometry; Integral Curves; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bhattacharya, A. (2018). On an ODE Associated to the Ricci Flow. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3427

Chicago Manual of Style (16th Edition):

Bhattacharya, Atreyee. “On an ODE Associated to the Ricci Flow.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed November 27, 2020. http://etd.iisc.ac.in/handle/2005/3427.

MLA Handbook (7th Edition):

Bhattacharya, Atreyee. “On an ODE Associated to the Ricci Flow.” 2018. Web. 27 Nov 2020.

Vancouver:

Bhattacharya A. On an ODE Associated to the Ricci Flow. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Nov 27]. Available from: http://etd.iisc.ac.in/handle/2005/3427.

Council of Science Editors:

Bhattacharya A. On an ODE Associated to the Ricci Flow. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3427

19. Jesus, Ana Maria Menezes de. A rigidez da curvatura de Ricci do hemisfério Sⁿ+.

Degree: 2009, Universidade Federal de Alagoas

In this work we demonstrate a theorem obtained by F. Hang and X. Wang, which ensures that a compact Riemannian manifold (Mn,g) with nonempty boundary,… (more)

Subjects/Keywords: Curvatura de Ricci; Esfera; Segunda forma fundamental; Variedade compacta com bordo; Ricci curvature; Sphere; Second fundamental form; Compact manifold with boundary; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jesus, A. M. M. d. (2009). A rigidez da curvatura de Ricci do hemisfério Sⁿ+. (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/1028

Chicago Manual of Style (16th Edition):

Jesus, Ana Maria Menezes de. “A rigidez da curvatura de Ricci do hemisfério Sⁿ+.” 2009. Masters Thesis, Universidade Federal de Alagoas. Accessed November 27, 2020. http://www.repositorio.ufal.br/handle/riufal/1028.

MLA Handbook (7th Edition):

Jesus, Ana Maria Menezes de. “A rigidez da curvatura de Ricci do hemisfério Sⁿ+.” 2009. Web. 27 Nov 2020.

Vancouver:

Jesus AMMd. A rigidez da curvatura de Ricci do hemisfério Sⁿ+. [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2009. [cited 2020 Nov 27]. Available from: http://www.repositorio.ufal.br/handle/riufal/1028.

Council of Science Editors:

Jesus AMMd. A rigidez da curvatura de Ricci do hemisfério Sⁿ+. [Masters Thesis]. Universidade Federal de Alagoas; 2009. Available from: http://www.repositorio.ufal.br/handle/riufal/1028

20. Pimentel, Soraya Bianca Souza. H-Quase Sóliton de Ricci.

Degree: 2016, Universidade Federal do Amazonas

Neste trabalho vamos estudar o conceito de h-quase sólitons de Ricci introduzido por Gomes-Wang-Xia o qual é uma extensão natural dos quase sólitons de Ricci(more)

Subjects/Keywords: Produto Warped; Curvatura Escalar; Quase Sólitons de Ricci; Esfera Euclidiana; Warped Product; Scalar Curvature; Almost Ricci Solitons; Euclidean Sphere; CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pimentel, S. B. S. (2016). H-Quase Sóliton de Ricci. (Masters Thesis). Universidade Federal do Amazonas. Retrieved from https://tede.ufam.edu.br/handle/tede/6392

Chicago Manual of Style (16th Edition):

Pimentel, Soraya Bianca Souza. “H-Quase Sóliton de Ricci.” 2016. Masters Thesis, Universidade Federal do Amazonas. Accessed November 27, 2020. https://tede.ufam.edu.br/handle/tede/6392.

MLA Handbook (7th Edition):

Pimentel, Soraya Bianca Souza. “H-Quase Sóliton de Ricci.” 2016. Web. 27 Nov 2020.

Vancouver:

Pimentel SBS. H-Quase Sóliton de Ricci. [Internet] [Masters thesis]. Universidade Federal do Amazonas; 2016. [cited 2020 Nov 27]. Available from: https://tede.ufam.edu.br/handle/tede/6392.

Council of Science Editors:

Pimentel SBS. H-Quase Sóliton de Ricci. [Masters Thesis]. Universidade Federal do Amazonas; 2016. Available from: https://tede.ufam.edu.br/handle/tede/6392


University of Cambridge

21. Rouzé, Cambyse. Functional inequalities in quantum information theory.

Degree: PhD, 2019, University of Cambridge

 Functional inequalities constitute a very powerful toolkit in studying various problems arising in classical information theory, statistics and many-body systems. Extensions of these tools to… (more)

Subjects/Keywords: Quantum information theory; functional inequalities; Quantum Markov semigroups; Logarithmic Sobolev inequality; Quantum channels; Capacities; Entanglement; Ricci curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rouzé, C. (2019). Functional inequalities in quantum information theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.38295 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774669

Chicago Manual of Style (16th Edition):

Rouzé, Cambyse. “Functional inequalities in quantum information theory.” 2019. Doctoral Dissertation, University of Cambridge. Accessed November 27, 2020. https://doi.org/10.17863/CAM.38295 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774669.

MLA Handbook (7th Edition):

Rouzé, Cambyse. “Functional inequalities in quantum information theory.” 2019. Web. 27 Nov 2020.

Vancouver:

Rouzé C. Functional inequalities in quantum information theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2020 Nov 27]. Available from: https://doi.org/10.17863/CAM.38295 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774669.

Council of Science Editors:

Rouzé C. Functional inequalities in quantum information theory. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://doi.org/10.17863/CAM.38295 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774669

22. Rouzé, Cambyse. Functional inequalities in quantum information theory.

Degree: PhD, 2019, University of Cambridge

 Functional inequalities constitute a very powerful toolkit in studying various problems arising in classical information theory, statistics and many-body systems. Extensions of these tools to… (more)

Subjects/Keywords: Quantum information theory; functional inequalities; Quantum Markov semigroups; Logarithmic Sobolev inequality; Quantum channels; Capacities; Entanglement; Ricci curvature

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rouzé, C. (2019). Functional inequalities in quantum information theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/291114

Chicago Manual of Style (16th Edition):

Rouzé, Cambyse. “Functional inequalities in quantum information theory.” 2019. Doctoral Dissertation, University of Cambridge. Accessed November 27, 2020. https://www.repository.cam.ac.uk/handle/1810/291114.

MLA Handbook (7th Edition):

Rouzé, Cambyse. “Functional inequalities in quantum information theory.” 2019. Web. 27 Nov 2020.

Vancouver:

Rouzé C. Functional inequalities in quantum information theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2020 Nov 27]. Available from: https://www.repository.cam.ac.uk/handle/1810/291114.

Council of Science Editors:

Rouzé C. Functional inequalities in quantum information theory. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/291114

23. Silva Neto, Gregorio Manoel da. O teorema de Alexandrov.

Degree: 2009, Universidade Federal de Alagoas

The goal of this dissertation is to present a R. Reilly's demonstration of the theorem of Alexandrov . The theorem states that The only compact… (more)

Subjects/Keywords: Geometria diferencial; Laplaciano; Hipersuperfícies; Curvatura média; Curvatura de Ricci; Alexandrov, teorema de; Obata, teorema de; Variedade riemanniana compacta; Differential geometry; Laplacian; Hypersurfaces; Mean curvature; Ricci Curvature; Alexandrov, theorem of; Obata, theorem of; Compact riemannian manifolds; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva Neto, G. M. d. (2009). O teorema de Alexandrov. (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/1026

Chicago Manual of Style (16th Edition):

Silva Neto, Gregorio Manoel da. “O teorema de Alexandrov.” 2009. Masters Thesis, Universidade Federal de Alagoas. Accessed November 27, 2020. http://www.repositorio.ufal.br/handle/riufal/1026.

MLA Handbook (7th Edition):

Silva Neto, Gregorio Manoel da. “O teorema de Alexandrov.” 2009. Web. 27 Nov 2020.

Vancouver:

Silva Neto GMd. O teorema de Alexandrov. [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2009. [cited 2020 Nov 27]. Available from: http://www.repositorio.ufal.br/handle/riufal/1026.

Council of Science Editors:

Silva Neto GMd. O teorema de Alexandrov. [Masters Thesis]. Universidade Federal de Alagoas; 2009. Available from: http://www.repositorio.ufal.br/handle/riufal/1026

24. Rocha, Robério Batista da. Hipersuperfícies mínimas completas estáveis com curvatura total finita.

Degree: 2010, Universidade Federal de Alagoas

The main goal of this dissertation is to present some results on minimal hypersurfaces in the Euclidean space related to the stability operator. Initially, we… (more)

Subjects/Keywords: Curvatura de Ricci; Curvatura final finita; Hipersuperfícies mínimas; Índice de Morse; Operador de estabilidade; Catenóide; Segunda forma fundamental; Ricci curvature; Finite total curvature; Minimal hypersurfaces; Morse índex; Stability operator; Catenoid; Second fundamental form; CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rocha, R. B. d. (2010). Hipersuperfícies mínimas completas estáveis com curvatura total finita. (Masters Thesis). Universidade Federal de Alagoas. Retrieved from http://www.repositorio.ufal.br/handle/riufal/897

Chicago Manual of Style (16th Edition):

Rocha, Robério Batista da. “Hipersuperfícies mínimas completas estáveis com curvatura total finita.” 2010. Masters Thesis, Universidade Federal de Alagoas. Accessed November 27, 2020. http://www.repositorio.ufal.br/handle/riufal/897.

MLA Handbook (7th Edition):

Rocha, Robério Batista da. “Hipersuperfícies mínimas completas estáveis com curvatura total finita.” 2010. Web. 27 Nov 2020.

Vancouver:

Rocha RBd. Hipersuperfícies mínimas completas estáveis com curvatura total finita. [Internet] [Masters thesis]. Universidade Federal de Alagoas; 2010. [cited 2020 Nov 27]. Available from: http://www.repositorio.ufal.br/handle/riufal/897.

Council of Science Editors:

Rocha RBd. Hipersuperfícies mínimas completas estáveis com curvatura total finita. [Masters Thesis]. Universidade Federal de Alagoas; 2010. Available from: http://www.repositorio.ufal.br/handle/riufal/897

25. Josà Nazareno Vieira Gomes. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.

Degree: PhD, 2012, Universidade Federal do Ceará

Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Ãngulo de contato; toro de Clifford; curvatura mÃdia constante; esfera euclidiana; quase sÃliton de Ricci; campo de vetores conforme; curvatura escalar constante; contact angle; Clifford torus; constant mean curvature; euclidian sphere; almost Ricci soliton; conformal vector fields; constant scalar curvature; variedades riemanianas; Riemannian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gomes, J. N. V. (2012). Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;

Chicago Manual of Style (16th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Doctoral Dissertation, Universidade Federal do Ceará. Accessed November 27, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

MLA Handbook (7th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Web. 27 Nov 2020.

Vancouver:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2012. [cited 2020 Nov 27]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

Council of Science Editors:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Doctoral Dissertation]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;


University of Michigan

26. Topiwala, Pankaj Navnitram. A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature).

Degree: PhD, Pure Sciences, 1985, University of Michigan

 An important consequence of Yau's solution to Calabi's conjecture is the existence of a Kahler-Einstein metric on the complex surface K3. However, Yau's existence proof… (more)

Subjects/Keywords: Approach; Calabi; Conjecture; Curvature; Einstein; K3; Metric; Ricci; Surface; Theorem; Twistor; Yau

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Topiwala, P. N. (1985). A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/127831

Chicago Manual of Style (16th Edition):

Topiwala, Pankaj Navnitram. “A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature).” 1985. Doctoral Dissertation, University of Michigan. Accessed November 27, 2020. http://hdl.handle.net/2027.42/127831.

MLA Handbook (7th Edition):

Topiwala, Pankaj Navnitram. “A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature).” 1985. Web. 27 Nov 2020.

Vancouver:

Topiwala PN. A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature). [Internet] [Doctoral dissertation]. University of Michigan; 1985. [cited 2020 Nov 27]. Available from: http://hdl.handle.net/2027.42/127831.

Council of Science Editors:

Topiwala PN. A Twistor Approach To The Einstein Metric On K3 (calabi Conjecture, Surface, Yau's Theorem, Ricci Curvature). [Doctoral Dissertation]. University of Michigan; 1985. Available from: http://hdl.handle.net/2027.42/127831

27. Li, Xiaolong. Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons.

Degree: Mathematics, 2017, University of California – San Diego

 This thesis is a summary of the work accomplished by the author and his coauthors in geometric analysis during his Ph.D. studies. It consists of… (more)

Subjects/Keywords: Mathematics; Gauss Curvature Flow; Moduli of Continuity; Ricci Solitons

…ABSTRACT OF THE DISSERTATION Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons by… …gradient shrinking Ricci soliton with positive isotropic curvature is either a quotient of S 4 or… …Ni[55]. More precisely, if the Ricci curvature of the manifold has a lower bound… …by Powers of Gauss Curvature”, arxiv:1606.01287[math.AP], 2016. Xiaolong Li, Lei… …Curvature”, International Mathematics Research Notices, Vol. 2016, No 00, pp. 1-11. vii… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, X. (2017). Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/7ks427xf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Li, Xiaolong. “Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons.” 2017. Thesis, University of California – San Diego. Accessed November 27, 2020. http://www.escholarship.org/uc/item/7ks427xf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Li, Xiaolong. “Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons.” 2017. Web. 27 Nov 2020.

Vancouver:

Li X. Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons. [Internet] [Thesis]. University of California – San Diego; 2017. [cited 2020 Nov 27]. Available from: http://www.escholarship.org/uc/item/7ks427xf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Li X. Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons. [Thesis]. University of California – San Diego; 2017. Available from: http://www.escholarship.org/uc/item/7ks427xf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Drugan, Gregory. Self-shrinking Solutions to Mean Curvature Flow.

Degree: PhD, 2014, University of Washington

 We construct new examples of self-shrinking solutions to mean curvature flow. We first construct an immersed and non-embedded sphere self-shrinker. This result verifies numerical evidence… (more)

Subjects/Keywords: kahler-ricci flow; mean curvature flow; self-shrinkers; Mathematics; mathematics

…85 87 93 Chapter 7: Self-shrinking solutions to the K¨ahler-Ricci flow… …mean curvature flow, and we prove rigidity theorems for self-shrinking solutions to geometric… …flows. 1.1 Constructions The mean curvature flow is a quasilinear parabolic equation with… …curvature flow was used to explain the non-coalescence of oppositely charged fluid droplets (… …mean curvature flow are the homothetic solutions. In [43], Huisken derived a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Drugan, G. (2014). Self-shrinking Solutions to Mean Curvature Flow. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/26529

Chicago Manual of Style (16th Edition):

Drugan, Gregory. “Self-shrinking Solutions to Mean Curvature Flow.” 2014. Doctoral Dissertation, University of Washington. Accessed November 27, 2020. http://hdl.handle.net/1773/26529.

MLA Handbook (7th Edition):

Drugan, Gregory. “Self-shrinking Solutions to Mean Curvature Flow.” 2014. Web. 27 Nov 2020.

Vancouver:

Drugan G. Self-shrinking Solutions to Mean Curvature Flow. [Internet] [Doctoral dissertation]. University of Washington; 2014. [cited 2020 Nov 27]. Available from: http://hdl.handle.net/1773/26529.

Council of Science Editors:

Drugan G. Self-shrinking Solutions to Mean Curvature Flow. [Doctoral Dissertation]. University of Washington; 2014. Available from: http://hdl.handle.net/1773/26529

29. Shu, Yan. Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces.

Degree: Docteur es, Mathématiques, 2016, Université Paris X – Nanterre

Dans cette thèse, nous nous intéressons à différents opérateurs d'inf-convolutions et à leurs applications à une classe d'inégalités de transport générales, plus spécifiquement sur les… (more)

Subjects/Keywords: Inf-Convolution; Equation d’Hamilton-Jacobi; Transport optimal; Inégalité de transport faible; Courbure de Ricci; Espace discret; Ordre convexe; Inf-Convolution; Hamilton-Jacobi equation; Weak transport inequality; Ricci curvature; Discrete space; Convex ordering; 500

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shu, Y. (2016). Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces. (Doctoral Dissertation). Université Paris X – Nanterre. Retrieved from http://www.theses.fr/2016PA100096

Chicago Manual of Style (16th Edition):

Shu, Yan. “Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces.” 2016. Doctoral Dissertation, Université Paris X – Nanterre. Accessed November 27, 2020. http://www.theses.fr/2016PA100096.

MLA Handbook (7th Edition):

Shu, Yan. “Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces.” 2016. Web. 27 Nov 2020.

Vancouver:

Shu Y. Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces. [Internet] [Doctoral dissertation]. Université Paris X – Nanterre; 2016. [cited 2020 Nov 27]. Available from: http://www.theses.fr/2016PA100096.

Council of Science Editors:

Shu Y. Opérateurs d’inf-convolution et inégalités de transport sur les graphes : Infimum-convolution operators and transport inequalities on discrete spaces. [Doctoral Dissertation]. Université Paris X – Nanterre; 2016. Available from: http://www.theses.fr/2016PA100096

30. Han, Bang-Xian. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.

Degree: Docteur es, Sciences, 2015, Paris 9

Cette thèse traite de plusieurs sujets d'analyse dans les espaces métriques mesurés, en lien avec le transport optimal et des conditions de courbure-dimension. Nous considérons… (more)

Subjects/Keywords: Espace métrique mesuré; Condition de courbure-Dimension; Transport optimal; Espace de Sobolev; Théorie de Bakry-Emery; Tenseur de Ricci; Metric measure space; Curvature-Dimension condition; Optimal transport; Sobolev space; Bakry-Emery theory; Ricci tensor; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, B. (2015). Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2015PA090014

Chicago Manual of Style (16th Edition):

Han, Bang-Xian. “Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.” 2015. Doctoral Dissertation, Paris 9. Accessed November 27, 2020. http://www.theses.fr/2015PA090014.

MLA Handbook (7th Edition):

Han, Bang-Xian. “Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces.” 2015. Web. 27 Nov 2020.

Vancouver:

Han B. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. [Internet] [Doctoral dissertation]. Paris 9; 2015. [cited 2020 Nov 27]. Available from: http://www.theses.fr/2015PA090014.

Council of Science Editors:

Han B. Analyse dans les espaces métriques mesurés : Topics on calculus in metric measure spaces. [Doctoral Dissertation]. Paris 9; 2015. Available from: http://www.theses.fr/2015PA090014

[1] [2]

.