Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Rationally connected varieties). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Rice University

1. Allums, Derek. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.

Degree: PhD, Natural Sciences, 2016, Rice University

 We show that a smooth projective geometrically rationally connected variety over the real numbers with at least one rational point admits a non-constant mapping from… (more)

Subjects/Keywords: rationally connected varieties; fano threefolds; V22; torelli theorem; real varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allums, D. (2016). Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/95585

Chicago Manual of Style (16th Edition):

Allums, Derek. “Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.” 2016. Doctoral Dissertation, Rice University. Accessed October 20, 2019. http://hdl.handle.net/1911/95585.

MLA Handbook (7th Edition):

Allums, Derek. “Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12.” 2016. Web. 20 Oct 2019.

Vancouver:

Allums D. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. [Internet] [Doctoral dissertation]. Rice University; 2016. [cited 2019 Oct 20]. Available from: http://hdl.handle.net/1911/95585.

Council of Science Editors:

Allums D. Notes on Real Rationally Connected Varieties and Fano Threefolds of Genus 12. [Doctoral Dissertation]. Rice University; 2016. Available from: http://hdl.handle.net/1911/95585


University of Oxford

2. Gounelas, Frank. Free curves on varieties.

Degree: PhD, 2012, University of Oxford

 In this thesis we study various ways in which every two general points on a variety can be connected by curves of a fixed genus,… (more)

Subjects/Keywords: 516.3; Algebraic geometry; Number theory; rationally connected varieties; free curves; vector bundles on curves; etale fundamental groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gounelas, F. (2012). Free curves on varieties. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:3a7f6dba-fad2-4517-994e-0b51ea311df8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580979

Chicago Manual of Style (16th Edition):

Gounelas, Frank. “Free curves on varieties.” 2012. Doctoral Dissertation, University of Oxford. Accessed October 20, 2019. http://ora.ox.ac.uk/objects/uuid:3a7f6dba-fad2-4517-994e-0b51ea311df8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580979.

MLA Handbook (7th Edition):

Gounelas, Frank. “Free curves on varieties.” 2012. Web. 20 Oct 2019.

Vancouver:

Gounelas F. Free curves on varieties. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2019 Oct 20]. Available from: http://ora.ox.ac.uk/objects/uuid:3a7f6dba-fad2-4517-994e-0b51ea311df8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580979.

Council of Science Editors:

Gounelas F. Free curves on varieties. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:3a7f6dba-fad2-4517-994e-0b51ea311df8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580979


Université Paris-Sud – Paris XI

3. Pirutka, Alena. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans… (more)

Subjects/Keywords: R-équivalence; Variétés rationnellement connexes; Groupes de Chow; Cohomologie non ramifiée; R-equivalence; Rationally connected varieties; Chow groups; Unramified cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pirutka, A. (2011). Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112197

Chicago Manual of Style (16th Edition):

Pirutka, Alena. “Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 20, 2019. http://www.theses.fr/2011PA112197.

MLA Handbook (7th Edition):

Pirutka, Alena. “Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.” 2011. Web. 20 Oct 2019.

Vancouver:

Pirutka A. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2019 Oct 20]. Available from: http://www.theses.fr/2011PA112197.

Council of Science Editors:

Pirutka A. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112197

4. Ou, Wenhao. Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties.

Degree: Docteur es, Mathématiques, 2015, Grenoble Alpes

Dans cette thèse, on étudie plusieurs sujets sur la géométrie des variétés rationnellement connexes. Une variété complexe est dite rationnellement connexe si par deux points… (more)

Subjects/Keywords: Géométrie algébrique; Géométrie complexe; Géométrie birationnelle; Variétés de Fano; Variétés rationnellement connexes; Fano varieties; Rationally connected varieties; Algebraic geometry; Complex geometry; Birational geometry; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ou, W. (2015). Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2015GREAM060

Chicago Manual of Style (16th Edition):

Ou, Wenhao. “Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties.” 2015. Doctoral Dissertation, Grenoble Alpes. Accessed October 20, 2019. http://www.theses.fr/2015GREAM060.

MLA Handbook (7th Edition):

Ou, Wenhao. “Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties.” 2015. Web. 20 Oct 2019.

Vancouver:

Ou W. Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2015. [cited 2019 Oct 20]. Available from: http://www.theses.fr/2015GREAM060.

Council of Science Editors:

Ou W. Géométrie des variétés rationnellement connexes : Geometry of rationally connected varieties. [Doctoral Dissertation]. Grenoble Alpes; 2015. Available from: http://www.theses.fr/2015GREAM060


Université Paris-Sud – Paris XI

5. Hu, Yong. Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties.

Degree: Docteur es, Mathématiques, 2012, Université Paris-Sud – Paris XI

Cette thèse se concentre sur l'étude de quelques propriétés arithmétiques de certaines variétés algébriques qui sont ``les plus simples'' en un sens géométrique et qui… (more)

Subjects/Keywords: Variétés rationnellement connexes; Approximation faible; Principe local-global; Hypersurfaces cubiques; Anneau local hensélien de dimension 2; Ramification des algèbres à division; Formes quadratiques; U-invariant; Rationally connected varieties; Weak approximation; Local-global principle; Cubic hypersurfaces; 2-dimensional local henselian domain; Ramification of division algebras; Quadratic forms; U-invariant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, Y. (2012). Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112060

Chicago Manual of Style (16th Edition):

Hu, Yong. “Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 20, 2019. http://www.theses.fr/2012PA112060.

MLA Handbook (7th Edition):

Hu, Yong. “Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties.” 2012. Web. 20 Oct 2019.

Vancouver:

Hu Y. Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2019 Oct 20]. Available from: http://www.theses.fr/2012PA112060.

Council of Science Editors:

Hu Y. Approximation faible et principe local-global pour certaines variétés rationnellement connexes : Weak approximation and local-global principle for certain rationally connected varieties. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112060

.