Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Rational singularities). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Chou, Chih-Chi. Singularities in Birational Geometry.

Degree: 2014, University of Illinois – Chicago

 In this thesis we study singularities in birational geometry. In the first part, we investigate log canonical singularities and its relation with rational singularities. In… (more)

Subjects/Keywords: Log canonical singularities; Rational singularities; Vanishing theorems.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chou, C. (2014). Singularities in Birational Geometry. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chou, Chih-Chi. “Singularities in Birational Geometry.” 2014. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/19077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chou, Chih-Chi. “Singularities in Birational Geometry.” 2014. Web. 12 Jul 2020.

Vancouver:

Chou C. Singularities in Birational Geometry. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/19077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chou C. Singularities in Birational Geometry. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/19077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

2. Prelli, Lorenzo. Results on singularities of pairs.

Degree: PhD, 2016, University of Washington

Singularities of algebraic varieties have been studied extensively, and recently also the properties of singularities of pairs have been investigated. This thesis presents several results… (more)

Subjects/Keywords: algebraic geometry; log canonical center; rational pair; singularities; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prelli, L. (2016). Results on singularities of pairs. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/36752

Chicago Manual of Style (16th Edition):

Prelli, Lorenzo. “Results on singularities of pairs.” 2016. Doctoral Dissertation, University of Washington. Accessed July 12, 2020. http://hdl.handle.net/1773/36752.

MLA Handbook (7th Edition):

Prelli, Lorenzo. “Results on singularities of pairs.” 2016. Web. 12 Jul 2020.

Vancouver:

Prelli L. Results on singularities of pairs. [Internet] [Doctoral dissertation]. University of Washington; 2016. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/1773/36752.

Council of Science Editors:

Prelli L. Results on singularities of pairs. [Doctoral Dissertation]. University of Washington; 2016. Available from: http://hdl.handle.net/1773/36752


University of Illinois – Chicago

3. Song, Lei. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.

Degree: 2014, University of Illinois – Chicago

 It is well known in algebraic geometry that Hilbert and Picard functors are representable by Hilbert schemes {Hilb}(X) and Picard schemes {Pic}(X) respectively. The thesis… (more)

Subjects/Keywords: Brill-Noether loci; Semi-regular line bundles; Rational singularities; Hilbert scheme of points on a surface; Universal family; Log canonical threshold

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Song, L. (2014). Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Song, Lei. “Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.” 2014. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/18980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Song, Lei. “Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.” 2014. Web. 12 Jul 2020.

Vancouver:

Song L. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/18980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Song L. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Liu, Jie. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.

Degree: Docteur es, Mathématiques, 2018, Université Côte d'Azur (ComUE)

Cette thèse est consacrée à l'étude de la géométrie des variétés de Fano complexes en utilisant les propriétés des sous-faisceaux du fibré tangent et la… (more)

Subjects/Keywords: Variétés de Fano; Espaces projectifs; Faisceaux amples; Feuilletages; Stabilité; Espaces hermitiens symétriques; Théorèmes d'annulation; Intersections complètes; Propriétés de Lefschetz; Non-annulation; Seconde classe de Chern; Birationalité; Diviseurs fondamentaux; Constante de Seshadri; Variétés de Moishezon; Singularités; Courbes rationnelles; Théorie de Mori; Fano varieties; Projective spaces; Ample sheaves; Foliations; Stability; Hermitian symmetric spaces; Vanishing theorems; Complete intersects; Lefschetz properties; Non-vanishing; Second Chern class; Birationality; Fundamental divisors; Seshadri constants; Moishezon manifolds; Singularities; Rational curves; Mori theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2018). Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2018AZUR4038

Chicago Manual of Style (16th Edition):

Liu, Jie. “Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.” 2018. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed July 12, 2020. http://www.theses.fr/2018AZUR4038.

MLA Handbook (7th Edition):

Liu, Jie. “Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor.” 2018. Web. 12 Jul 2020.

Vancouver:

Liu J. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2018. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2018AZUR4038.

Council of Science Editors:

Liu J. Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental : Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2018. Available from: http://www.theses.fr/2018AZUR4038

.