Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Rational points). Showing records 1 – 30 of 32 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


California State University – Channel Islands

1. Moreno Martinez, Victor Manuel. Rational Distances to the Corners of the Unit Square .

Degree: 2009, California State University – Channel Islands

 The objective of this thesis is to create a concrete statement about the existence of rational points in the unit square. We will use the… (more)

Subjects/Keywords: Rational points; Unit square; Tesselating the square with rational triangles; Rational points in polygons; Mathematics thesis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moreno Martinez, V. M. (2009). Rational Distances to the Corners of the Unit Square . (Thesis). California State University – Channel Islands. Retrieved from http://hdl.handle.net/10139/647

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moreno Martinez, Victor Manuel. “Rational Distances to the Corners of the Unit Square .” 2009. Thesis, California State University – Channel Islands. Accessed March 29, 2020. http://hdl.handle.net/10139/647.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moreno Martinez, Victor Manuel. “Rational Distances to the Corners of the Unit Square .” 2009. Web. 29 Mar 2020.

Vancouver:

Moreno Martinez VM. Rational Distances to the Corners of the Unit Square . [Internet] [Thesis]. California State University – Channel Islands; 2009. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10139/647.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moreno Martinez VM. Rational Distances to the Corners of the Unit Square . [Thesis]. California State University – Channel Islands; 2009. Available from: http://hdl.handle.net/10139/647

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Manzateanu, Adelina. Rational points in function fields.

Degree: PhD, 2019, University of Bristol

 A function field version of the circle method is applied to a cubic hypersurface X defined over a finite field Fq. Using the correspondence between… (more)

Subjects/Keywords: 510; number theory; function fields; rational points; rational curves; Manin's conjecture; Peyre's constant; 0-cycles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Manzateanu, A. (2019). Rational points in function fields. (Doctoral Dissertation). University of Bristol. Retrieved from http://hdl.handle.net/1983/8ccd5198-8255-4b77-8562-f36c7af6981e

Chicago Manual of Style (16th Edition):

Manzateanu, Adelina. “Rational points in function fields.” 2019. Doctoral Dissertation, University of Bristol. Accessed March 29, 2020. http://hdl.handle.net/1983/8ccd5198-8255-4b77-8562-f36c7af6981e.

MLA Handbook (7th Edition):

Manzateanu, Adelina. “Rational points in function fields.” 2019. Web. 29 Mar 2020.

Vancouver:

Manzateanu A. Rational points in function fields. [Internet] [Doctoral dissertation]. University of Bristol; 2019. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1983/8ccd5198-8255-4b77-8562-f36c7af6981e.

Council of Science Editors:

Manzateanu A. Rational points in function fields. [Doctoral Dissertation]. University of Bristol; 2019. Available from: http://hdl.handle.net/1983/8ccd5198-8255-4b77-8562-f36c7af6981e

3. Huang, Zhizhong. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.

Degree: Docteur es, Mathématiques, 2017, Grenoble Alpes

L'étude de la distribution des points rationnels sur les variétés algébriques est un sujet classique de la géométrie diophantienne. Le programme proposé par V. Batyrev… (more)

Subjects/Keywords: Approximation diophantienne; Points rationnels; Géométrie arithmétique; Diophantine approximation; Rational points; Arithmetic geometry; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, Z. (2017). Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2017GREAM036

Chicago Manual of Style (16th Edition):

Huang, Zhizhong. “Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.” 2017. Doctoral Dissertation, Grenoble Alpes. Accessed March 29, 2020. http://www.theses.fr/2017GREAM036.

MLA Handbook (7th Edition):

Huang, Zhizhong. “Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.” 2017. Web. 29 Mar 2020.

Vancouver:

Huang Z. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2017. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2017GREAM036.

Council of Science Editors:

Huang Z. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. [Doctoral Dissertation]. Grenoble Alpes; 2017. Available from: http://www.theses.fr/2017GREAM036


University of Washington

4. Chen, Hao. Computational aspects of modular parametrizations of elliptic curves.

Degree: PhD, 2016, University of Washington

 \abstract{ We investigate computational problems related to modular parametrizations of elliptic curves defined over ℚ. We develop algorithms to compute the Mazur Swinnerton-Dyer critical subgroup… (more)

Subjects/Keywords: Elliptic curves; modular forms; modular parametrization; rational points; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, H. (2016). Computational aspects of modular parametrizations of elliptic curves. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/36754

Chicago Manual of Style (16th Edition):

Chen, Hao. “Computational aspects of modular parametrizations of elliptic curves.” 2016. Doctoral Dissertation, University of Washington. Accessed March 29, 2020. http://hdl.handle.net/1773/36754.

MLA Handbook (7th Edition):

Chen, Hao. “Computational aspects of modular parametrizations of elliptic curves.” 2016. Web. 29 Mar 2020.

Vancouver:

Chen H. Computational aspects of modular parametrizations of elliptic curves. [Internet] [Doctoral dissertation]. University of Washington; 2016. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1773/36754.

Council of Science Editors:

Chen H. Computational aspects of modular parametrizations of elliptic curves. [Doctoral Dissertation]. University of Washington; 2016. Available from: http://hdl.handle.net/1773/36754

5. Mignot, Teddy. Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties.

Degree: Docteur es, Mathématiques, 2015, Grenoble Alpes

Depuis les 50 dernières années, de nombreux progrès ont été faits dans la compréhension du comportement asymptotique du nombre de points rationnels de hauteur bornée… (more)

Subjects/Keywords: Points rationnels; Variétés toriques; Méthode du cercle; Hypersurfaces; Rational points; Toric varieties; Circle Method; Hypersurfaces; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mignot, T. (2015). Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2015GREAM048

Chicago Manual of Style (16th Edition):

Mignot, Teddy. “Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties.” 2015. Doctoral Dissertation, Grenoble Alpes. Accessed March 29, 2020. http://www.theses.fr/2015GREAM048.

MLA Handbook (7th Edition):

Mignot, Teddy. “Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties.” 2015. Web. 29 Mar 2020.

Vancouver:

Mignot T. Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2015. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2015GREAM048.

Council of Science Editors:

Mignot T. Points de hauteur bornée sur les hypersurfaces des variétés toriques : Points of bounded height on hypersurfaces of toric varieties. [Doctoral Dissertation]. Grenoble Alpes; 2015. Available from: http://www.theses.fr/2015GREAM048

6. Le Rudulier, Cécile. Points algébriques de hauteur bornée : Algebraic points of bounded height.

Degree: Docteur es, Mathématiques et applications, 2014, Rennes 1

L'étude de la répartition des points rationnels ou algébriques d'une variété algébrique selon leur hauteur est un problème classique de géométrie diophantienne. Dans cette thèse,… (more)

Subjects/Keywords: Théorie des nombres; Géométrie algébrique arithmétique; Points rationnels; Schémas de Hilbert; Number theory; Arithmetic algebraic geometry; Rational points; Hilbert schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Rudulier, C. (2014). Points algébriques de hauteur bornée : Algebraic points of bounded height. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2014REN1S073

Chicago Manual of Style (16th Edition):

Le Rudulier, Cécile. “Points algébriques de hauteur bornée : Algebraic points of bounded height.” 2014. Doctoral Dissertation, Rennes 1. Accessed March 29, 2020. http://www.theses.fr/2014REN1S073.

MLA Handbook (7th Edition):

Le Rudulier, Cécile. “Points algébriques de hauteur bornée : Algebraic points of bounded height.” 2014. Web. 29 Mar 2020.

Vancouver:

Le Rudulier C. Points algébriques de hauteur bornée : Algebraic points of bounded height. [Internet] [Doctoral dissertation]. Rennes 1; 2014. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2014REN1S073.

Council of Science Editors:

Le Rudulier C. Points algébriques de hauteur bornée : Algebraic points of bounded height. [Doctoral Dissertation]. Rennes 1; 2014. Available from: http://www.theses.fr/2014REN1S073

7. Pannekoek, Rene. Topological aspects of rational points on K3 surfaces.

Degree: 2013, Mathematical Institute, Faculty of Science, Leiden University

 A common theme in the research on rational points on varieties is: investigating under which conditions rational points are dense with respect to a chosen… (more)

Subjects/Keywords: K3 surfaces; Number theory; Rational points; K3 surfaces; Number theory; Rational points

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pannekoek, R. (2013). Topological aspects of rational points on K3 surfaces. (Doctoral Dissertation). Mathematical Institute, Faculty of Science, Leiden University. Retrieved from http://hdl.handle.net/1887/21743

Chicago Manual of Style (16th Edition):

Pannekoek, Rene. “Topological aspects of rational points on K3 surfaces.” 2013. Doctoral Dissertation, Mathematical Institute, Faculty of Science, Leiden University. Accessed March 29, 2020. http://hdl.handle.net/1887/21743.

MLA Handbook (7th Edition):

Pannekoek, Rene. “Topological aspects of rational points on K3 surfaces.” 2013. Web. 29 Mar 2020.

Vancouver:

Pannekoek R. Topological aspects of rational points on K3 surfaces. [Internet] [Doctoral dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2013. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1887/21743.

Council of Science Editors:

Pannekoek R. Topological aspects of rational points on K3 surfaces. [Doctoral Dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2013. Available from: http://hdl.handle.net/1887/21743


University of Kentucky

8. Militzer, Erin. <i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation.

Degree: 2010, University of Kentucky

A connection is established between uniform rational approximation, and approximation in the mean by polynomials on compact nowhere dense subsets of the complex plane C. Peak points for R(X) and bounded point evaluations for Hp(X, dA), 1 ≤ p < ∞, play a fundamental role.

Subjects/Keywords: polynomial and rational approximation; analytic capacity; peak points; point evaluations; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Militzer, E. (2010). <i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/106

Chicago Manual of Style (16th Edition):

Militzer, Erin. “<i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation.” 2010. Doctoral Dissertation, University of Kentucky. Accessed March 29, 2020. https://uknowledge.uky.edu/gradschool_diss/106.

MLA Handbook (7th Edition):

Militzer, Erin. “<i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation.” 2010. Web. 29 Mar 2020.

Vancouver:

Militzer E. <i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation. [Internet] [Doctoral dissertation]. University of Kentucky; 2010. [cited 2020 Mar 29]. Available from: https://uknowledge.uky.edu/gradschool_diss/106.

Council of Science Editors:

Militzer E. <i>Lp</i> Bounded Point Evaluations for Polynomials and Uniform Rational Approximation. [Doctoral Dissertation]. University of Kentucky; 2010. Available from: https://uknowledge.uky.edu/gradschool_diss/106


Duke University

9. Watanabe, Tatsunari. Rational Points of Universal Curves in Positive Characteristics .

Degree: 2015, Duke University

  For the moduli stack \mathcal{M}g,n/𝔽p of smooth curves of type (g,n) over Spec 𝔽p with the function field K, we show that if g ≥ 3,… (more)

Subjects/Keywords: Mathematics; Algebraic geometry; Moduli of curves; Positive characteristic; Rational points; Universal curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Watanabe, T. (2015). Rational Points of Universal Curves in Positive Characteristics . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/9874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Thesis, Duke University. Accessed March 29, 2020. http://hdl.handle.net/10161/9874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Watanabe, Tatsunari. “Rational Points of Universal Curves in Positive Characteristics .” 2015. Web. 29 Mar 2020.

Vancouver:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Internet] [Thesis]. Duke University; 2015. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10161/9874.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Watanabe T. Rational Points of Universal Curves in Positive Characteristics . [Thesis]. Duke University; 2015. Available from: http://hdl.handle.net/10161/9874

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

10. Eskandari, Payman. Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic.

Degree: PhD, 2016, University of Toronto

 The results of this thesis can be divided into two parts, geometric and arithmetic. Let X be a smooth projective curve over ℂ, and e,∞∈… (more)

Subjects/Keywords: algebraic cycles; fundamental group; mixed Hodge structures; rational points on Jacobians; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eskandari, P. (2016). Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76392

Chicago Manual of Style (16th Edition):

Eskandari, Payman. “Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic.” 2016. Doctoral Dissertation, University of Toronto. Accessed March 29, 2020. http://hdl.handle.net/1807/76392.

MLA Handbook (7th Edition):

Eskandari, Payman. “Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic.” 2016. Web. 29 Mar 2020.

Vancouver:

Eskandari P. Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1807/76392.

Council of Science Editors:

Eskandari P. Algebraic Cycles, Fundamental Group of a Punctured Curve, and Applications in Arithmetic. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76392


Université Paris-Sud – Paris XI

11. Smeets, Arne. Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

Le thème principal de cette thèse est l’interaction entre le “comportement” des points rationnels sur certaines classes de variétés définies sur des corps globaux et… (more)

Subjects/Keywords: Points rationnels; Principe de Hasse; Approximation faible; Obstruction de Brauer-Manin; Cohomologie étale; Géométrie logarythmique; Rational points; Hasse principle; Weak approximation; Brauer-manin obstruction; Étale cohomology; Logarithmic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smeets, A. (2014). Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112213

Chicago Manual of Style (16th Edition):

Smeets, Arne. “Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 29, 2020. http://www.theses.fr/2014PA112213.

MLA Handbook (7th Edition):

Smeets, Arne. “Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties.” 2014. Web. 29 Mar 2020.

Vancouver:

Smeets A. Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2014PA112213.

Council of Science Editors:

Smeets A. Contributions à l'étude cohomologique des points rationnels sur les variétés algébriques : Contributions to the cohomological study of rational points on algebraic varieties. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112213

12. Liu, Chunhui. Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties.

Degree: Docteur es, Mathématiques. Théorie des nombres, 2016, Sorbonne Paris Cité

Le comptage des points rationnels est un problème classique en géométrie diophantienne. On s’intéresse à des majorations du nombre des points rationnels de hauteur bornée… (more)

Subjects/Keywords: Comptage de multiplicités; Comptage des points rationnels; Fonction de Hilbert-Samuel; Contrôle des places non réduites; Counting multiplicities; Counting rational points; Hilbert-Samuel function; Control non reduceness

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, C. (2016). Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCC295

Chicago Manual of Style (16th Edition):

Liu, Chunhui. “Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 29, 2020. http://www.theses.fr/2016USPCC295.

MLA Handbook (7th Edition):

Liu, Chunhui. “Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties.” 2016. Web. 29 Mar 2020.

Vancouver:

Liu C. Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2016USPCC295.

Council of Science Editors:

Liu C. Comptage des points rationnels dans les variétés arithmétiques : Counting rational points in the arithmetic varieties. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCC295


University of Oxford

13. Myerson, Simon L. Rydin. Systems of forms in many variables.

Degree: PhD, 2016, University of Oxford

 We consider systems of polynomial equations and inequalities to be solved in integers. By applying the circle method, when the number of variables is large… (more)

Subjects/Keywords: Mathematics; Analytic number theory; Number theory; Algebraic varieties; Rational points; Quadratic forms; Circle method; Hardy-Littlewood method; Forms in many variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Myerson, S. L. R. (2016). Systems of forms in many variables. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:a9932e90-4784-466a-a694-d387c1228533 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757677

Chicago Manual of Style (16th Edition):

Myerson, Simon L Rydin. “Systems of forms in many variables.” 2016. Doctoral Dissertation, University of Oxford. Accessed March 29, 2020. http://ora.ox.ac.uk/objects/uuid:a9932e90-4784-466a-a694-d387c1228533 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757677.

MLA Handbook (7th Edition):

Myerson, Simon L Rydin. “Systems of forms in many variables.” 2016. Web. 29 Mar 2020.

Vancouver:

Myerson SLR. Systems of forms in many variables. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2020 Mar 29]. Available from: http://ora.ox.ac.uk/objects/uuid:a9932e90-4784-466a-a694-d387c1228533 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757677.

Council of Science Editors:

Myerson SLR. Systems of forms in many variables. [Doctoral Dissertation]. University of Oxford; 2016. Available from: http://ora.ox.ac.uk/objects/uuid:a9932e90-4784-466a-a694-d387c1228533 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757677


University of Illinois – Chicago

14. Song, Lei. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.

Degree: 2014, University of Illinois – Chicago

 It is well known in algebraic geometry that Hilbert and Picard functors are representable by Hilbert schemes {Hilb}(X) and Picard schemes {Pic}(X) respectively. The thesis… (more)

Subjects/Keywords: Brill-Noether loci; Semi-regular line bundles; Rational singularities; Hilbert scheme of points on a surface; Universal family; Log canonical threshold

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Song, L. (2014). Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Song, Lei. “Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.” 2014. Thesis, University of Illinois – Chicago. Accessed March 29, 2020. http://hdl.handle.net/10027/18980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Song, Lei. “Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points.” 2014. Web. 29 Mar 2020.

Vancouver:

Song L. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10027/18980.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Song L. Rational Singularities of Brill-Noether Loci and Log Canonical Thresholds on Hilbert Schemes of Points. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18980

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

15. Kleven, Stephanie. Counting points of bounded height on del Pezzo surfaces.

Degree: 2006, University of Waterloo

 del Pezzo surfaces are isomorphic to either P1 x P1 or P2 blown up <i>a</i> times, where <i>a</i> ranges from 0 to 8. We will… (more)

Subjects/Keywords: Mathematics; del Pezzo surfaces; rational points; height function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kleven, S. (2006). Counting points of bounded height on del Pezzo surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/2948

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kleven, Stephanie. “Counting points of bounded height on del Pezzo surfaces.” 2006. Thesis, University of Waterloo. Accessed March 29, 2020. http://hdl.handle.net/10012/2948.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kleven, Stephanie. “Counting points of bounded height on del Pezzo surfaces.” 2006. Web. 29 Mar 2020.

Vancouver:

Kleven S. Counting points of bounded height on del Pezzo surfaces. [Internet] [Thesis]. University of Waterloo; 2006. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10012/2948.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kleven S. Counting points of bounded height on del Pezzo surfaces. [Thesis]. University of Waterloo; 2006. Available from: http://hdl.handle.net/10012/2948

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. NG YONG HAO. ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES.

Degree: 2015, National University of Singapore

Subjects/Keywords: Arithmetic dynamics; finiteness of preperiodic points; wandering points; integral points; rational functions; minimal model problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

HAO, N. Y. (2015). ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/121761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

HAO, NG YONG. “ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES.” 2015. Thesis, National University of Singapore. Accessed March 29, 2020. http://scholarbank.nus.edu.sg/handle/10635/121761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

HAO, NG YONG. “ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES.” 2015. Web. 29 Mar 2020.

Vancouver:

HAO NY. ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES. [Internet] [Thesis]. National University of Singapore; 2015. [cited 2020 Mar 29]. Available from: http://scholarbank.nus.edu.sg/handle/10635/121761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

HAO NY. ARITHMETIC DYNAMICS ON ALGEBRAIC CURVES. [Thesis]. National University of Singapore; 2015. Available from: http://scholarbank.nus.edu.sg/handle/10635/121761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. Helmich, Jochen. Geometrie der Juliamenge und präperiodische kritische Punkte.

Degree: 2005, Technische Universität Dortmund

Die Juliamenge einer rationalen Funktion ist definiert als die Menge aller Punkte der Riemannschen Zahlenkugel, in denen die Folge der Iterierten dieser Funktion (im Montelschen… (more)

Subjects/Keywords: complex dynamical system; Critical points; Fatoumenge; Fatou set; Jordan arc; Jordanbogen; Jordan curve; Jordankurve; Juliamenge; Julia set; komplexe dynamische Systeme; Kritische Punkte; rationale Iteration; rational iteration; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Helmich, J. (2005). Geometrie der Juliamenge und präperiodische kritische Punkte. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/21527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Helmich, Jochen. “Geometrie der Juliamenge und präperiodische kritische Punkte.” 2005. Thesis, Technische Universität Dortmund. Accessed March 29, 2020. http://hdl.handle.net/2003/21527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Helmich, Jochen. “Geometrie der Juliamenge und präperiodische kritische Punkte.” 2005. Web. 29 Mar 2020.

Vancouver:

Helmich J. Geometrie der Juliamenge und präperiodische kritische Punkte. [Internet] [Thesis]. Technische Universität Dortmund; 2005. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/2003/21527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Helmich J. Geometrie der Juliamenge und präperiodische kritische Punkte. [Thesis]. Technische Universität Dortmund; 2005. Available from: http://hdl.handle.net/2003/21527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Vilnius University

18. Zinevičius, Albertas. Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų.

Degree: PhD, Mathematics, 2013, Vilnius University

Disertaciją sudaro darbai, autoriaus atlikti 2006-2013 metais. Šiuos darbus jungianti tema yra algebrinių kreivių, apibrėžtų virš racionaliųjų skaičių, šeimos, einančios per taškus, kurių koordinatės priklauso… (more)

Subjects/Keywords: Hiperelipsinės kreivės; Racionalieji taškai; Aukštis; Kongruenčių skaičių kreivės; Ciklinis skaičių kūnas; Hyperelliptic curves; Rational points; Height; Congruent number curves; Cyclic number field

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zinevičius, A. (2013). Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102522-14776 ;

Chicago Manual of Style (16th Edition):

Zinevičius, Albertas. “Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų.” 2013. Doctoral Dissertation, Vilnius University. Accessed March 29, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102522-14776 ;.

MLA Handbook (7th Edition):

Zinevičius, Albertas. “Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų.” 2013. Web. 29 Mar 2020.

Vancouver:

Zinevičius A. Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų. [Internet] [Doctoral dissertation]. Vilnius University; 2013. [cited 2020 Mar 29]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102522-14776 ;.

Council of Science Editors:

Zinevičius A. Kreivės virš skaičių kūnų ir jų sveikųjų skaičių žiedų. [Doctoral Dissertation]. Vilnius University; 2013. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102522-14776 ;


Vilnius University

19. Zinevičius, Albertas. Curves over number fields and their rings of integers.

Degree: Dissertation, Mathematics, 2013, Vilnius University

In this document, the author collected his work that ranges through the years 2006 - 2013. The common theme that occurs in its five parts… (more)

Subjects/Keywords: Hyperelliptic curves; Rational points; Height; Congruent number curves; Cyclic number field; Hiperelipsinės kreivės; Racionalieji taškai; Aukštis; Kongruenčių skaičių kreivės; Ciklinis skaičių kūnas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zinevičius, A. (2013). Curves over number fields and their rings of integers. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929 ;

Chicago Manual of Style (16th Edition):

Zinevičius, Albertas. “Curves over number fields and their rings of integers.” 2013. Doctoral Dissertation, Vilnius University. Accessed March 29, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929 ;.

MLA Handbook (7th Edition):

Zinevičius, Albertas. “Curves over number fields and their rings of integers.” 2013. Web. 29 Mar 2020.

Vancouver:

Zinevičius A. Curves over number fields and their rings of integers. [Internet] [Doctoral dissertation]. Vilnius University; 2013. [cited 2020 Mar 29]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929 ;.

Council of Science Editors:

Zinevičius A. Curves over number fields and their rings of integers. [Doctoral Dissertation]. Vilnius University; 2013. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20131029_102540-82929 ;


Freie Universität Berlin

20. Kaur, Inder. Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve.

Degree: 2017, Freie Universität Berlin

 Die C1-Vermutung besagt, dass jede separabel rational zusammenhängende Varietät über einem C1-Körper einen rationalen Punkt besitzt. Die Vermutung wurde in mehreren Fällen in den Arbeiten… (more)

Subjects/Keywords: Kollar-Lang-Manin conjecture; Moduli of stable sheaves; Artin Approximation; Fano manifolds; Rational points; 500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaur, I. (2017). Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-10810

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kaur, Inder. “Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve.” 2017. Thesis, Freie Universität Berlin. Accessed March 29, 2020. http://dx.doi.org/10.17169/refubium-10810.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kaur, Inder. “Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve.” 2017. Web. 29 Mar 2020.

Vancouver:

Kaur I. Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve. [Internet] [Thesis]. Freie Universität Berlin; 2017. [cited 2020 Mar 29]. Available from: http://dx.doi.org/10.17169/refubium-10810.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kaur I. Die C₁-Vermutung für den Modulraum von stabilen Vektorbündeln mit fester Determinante auf einer glatten projektiven Kurve. [Thesis]. Freie Universität Berlin; 2017. Available from: http://dx.doi.org/10.17169/refubium-10810

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

21. Norfleet, Mark Alan. Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points.

Degree: PhD, Mathematics, 2013, University of Texas – Austin

 We construct Fuchsian groups [Gamma] of signature (0 : 2, ... ,2 ;1;0) so that the set of hyperbolic fixed points of [Gamma] will contain… (more)

Subjects/Keywords: Fuchsian groups; Rational hyperbolic fixed points; Pseudomodular groups

…fixed points. If one can exhibit a hyperbolic element of ∆ that has rational fixed points… …and the results also address the presence of rational hyperbolic fixed points. Namely, we… …given finite set of rational hyperbolic fixed points. The result is Theorem. Let Y be a finite… …set of rational boundary points of the hyperbolic plane. Then there are infinitely many… …furthermore, when Y is a set of rational boundary points, and by restricting some of the freedom in… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Norfleet, M. A. (2013). Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21688

Chicago Manual of Style (16th Edition):

Norfleet, Mark Alan. “Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed March 29, 2020. http://hdl.handle.net/2152/21688.

MLA Handbook (7th Edition):

Norfleet, Mark Alan. “Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points.” 2013. Web. 29 Mar 2020.

Vancouver:

Norfleet MA. Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/2152/21688.

Council of Science Editors:

Norfleet MA. Fuchsian groups of signature (0 : 2, ... , 2; 1; 0) with rational hyperbolic fixed points. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21688


University of Missouri – Columbia

22. Hart, Derrick, 1980-. Explorations of geometric combinatorics in vector spaces over finite fields.

Degree: PhD, 2008, University of Missouri – Columbia

 We study how large a set of points needs to be in a vector space over a finite field in order for the points to… (more)

Subjects/Keywords: Rational points (Geometry); Vector spaces; Finite fields (Algebra); Euclid's Elements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hart, Derrick, 1. (2008). Explorations of geometric combinatorics in vector spaces over finite fields. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/5585

Chicago Manual of Style (16th Edition):

Hart, Derrick, 1980-. “Explorations of geometric combinatorics in vector spaces over finite fields.” 2008. Doctoral Dissertation, University of Missouri – Columbia. Accessed March 29, 2020. https://doi.org/10.32469/10355/5585.

MLA Handbook (7th Edition):

Hart, Derrick, 1980-. “Explorations of geometric combinatorics in vector spaces over finite fields.” 2008. Web. 29 Mar 2020.

Vancouver:

Hart, Derrick 1. Explorations of geometric combinatorics in vector spaces over finite fields. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2008. [cited 2020 Mar 29]. Available from: https://doi.org/10.32469/10355/5585.

Council of Science Editors:

Hart, Derrick 1. Explorations of geometric combinatorics in vector spaces over finite fields. [Doctoral Dissertation]. University of Missouri – Columbia; 2008. Available from: https://doi.org/10.32469/10355/5585

23. Nakahara, Masahiro. Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces.

Degree: PhD, Natural Sciences, 2018, Rice University

 We study the classes in the Brauer group of varieties that never obstruct the Hasse principle. We prove that for a variety with a genus… (more)

Subjects/Keywords: Rational points; Brauer-Manin obstruction; K3 surfaces; del Pezzo surfaces

…X) whose order is prime to n does not obstruct rational points? We note that a… …obstruction to rational points if Br(X){2} + Br0 (X) = Br(X)… …Brauer group does not obstruct rational points on a smooth diagonal quartic surface over Q… …on C such that for any X 2 C, if Br(X) obstructs rational points, then so does Br… …group can give rise to obstructions on the existence of rational points. More precisely… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nakahara, M. (2018). Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105687

Chicago Manual of Style (16th Edition):

Nakahara, Masahiro. “Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces.” 2018. Doctoral Dissertation, Rice University. Accessed March 29, 2020. http://hdl.handle.net/1911/105687.

MLA Handbook (7th Edition):

Nakahara, Masahiro. “Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces.” 2018. Web. 29 Mar 2020.

Vancouver:

Nakahara M. Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces. [Internet] [Doctoral dissertation]. Rice University; 2018. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1911/105687.

Council of Science Editors:

Nakahara M. Cohomology classes responsible for Brauer-Manin obstructions, with applications to rational and K3 surfaces. [Doctoral Dissertation]. Rice University; 2018. Available from: http://hdl.handle.net/1911/105687


University of Missouri – Columbia

24. Hart, Derrick, 1980-. Explorations of geometric combinatorics in vector spaces over finite fields.

Degree: PhD, 2008, University of Missouri – Columbia

 We study how large a set of points needs to be in a vector space over a finite field in order for the points to… (more)

Subjects/Keywords: Rational points (Geometry); Vector spaces; Finite fields (Algebra); Euclid's Elements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hart, Derrick, 1. (2008). Explorations of geometric combinatorics in vector spaces over finite fields. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/5585

Chicago Manual of Style (16th Edition):

Hart, Derrick, 1980-. “Explorations of geometric combinatorics in vector spaces over finite fields.” 2008. Doctoral Dissertation, University of Missouri – Columbia. Accessed March 29, 2020. http://hdl.handle.net/10355/5585.

MLA Handbook (7th Edition):

Hart, Derrick, 1980-. “Explorations of geometric combinatorics in vector spaces over finite fields.” 2008. Web. 29 Mar 2020.

Vancouver:

Hart, Derrick 1. Explorations of geometric combinatorics in vector spaces over finite fields. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2008. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10355/5585.

Council of Science Editors:

Hart, Derrick 1. Explorations of geometric combinatorics in vector spaces over finite fields. [Doctoral Dissertation]. University of Missouri – Columbia; 2008. Available from: http://hdl.handle.net/10355/5585

25. Ballaÿ, François. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.

Degree: Docteur es, Mathématiques, 2017, Clermont Auvergne

Dans cette thèse, nous appliquons des outils issus de la théorie d’Arakelov à l’étude de problèmes de géométrie diophantienne. Une notion centrale dans notre étude… (more)

Subjects/Keywords: Géométrie diophantienne; Approximation diophantienne; Géométrie d’Arakelov; Théorie des pentes; Points rationnels; Formes linéaires de logarithmes; Hauteurs; Diophantine geometry; Diophantine approximation; Arakelov geometry; Slope theory; Rational points; Linear forms in logarithms; Heights

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ballaÿ, F. (2017). Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. (Doctoral Dissertation). Clermont Auvergne. Retrieved from http://www.theses.fr/2017CLFAC034

Chicago Manual of Style (16th Edition):

Ballaÿ, François. “Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.” 2017. Doctoral Dissertation, Clermont Auvergne. Accessed March 29, 2020. http://www.theses.fr/2017CLFAC034.

MLA Handbook (7th Edition):

Ballaÿ, François. “Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.” 2017. Web. 29 Mar 2020.

Vancouver:

Ballaÿ F. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. [Internet] [Doctoral dissertation]. Clermont Auvergne; 2017. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2017CLFAC034.

Council of Science Editors:

Ballaÿ F. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. [Doctoral Dissertation]. Clermont Auvergne; 2017. Available from: http://www.theses.fr/2017CLFAC034

26. Destagnol, Kévin. Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties.

Degree: Docteur es, Mathématiques. Théorie des nombres, 2017, Sorbonne Paris Cité

Dans cette thèse, nous étudions les conjectures de Manin et Peyre pour plusieursclasses de variétés algébriques. Les conjectures de Manin et Peyre décrivent pour les… (more)

Subjects/Keywords: Conjecture de Manin; Constante de Peyre; Descente sur des torseurs; Comptage de points rationnels sur des variétés algébriques.; Manin's conjecture; Peyre's constant; Descent method on torsors; , counting rational points on algebraic varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Destagnol, K. (2017). Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2017USPCC119

Chicago Manual of Style (16th Edition):

Destagnol, Kévin. “Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties.” 2017. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 29, 2020. http://www.theses.fr/2017USPCC119.

MLA Handbook (7th Edition):

Destagnol, Kévin. “Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties.” 2017. Web. 29 Mar 2020.

Vancouver:

Destagnol K. Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2017. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2017USPCC119.

Council of Science Editors:

Destagnol K. Répartition des points rationnels sur certaines classes de variétés algébriques : Distribution of rational points of bounded height on certain algebraic varieties. [Doctoral Dissertation]. Sorbonne Paris Cité; 2017. Available from: http://www.theses.fr/2017USPCC119

27. Nardi, Jade. Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory.

Degree: Docteur es, Mathématiques et applications, 2019, Université Toulouse III – Paul Sabatier

Cette thèse, à la frontière entre les mathématiques et l'informatique, est consacrée en partie à l'étude des paramètres et des propriétés des codes de Goppa… (more)

Subjects/Keywords: Géométrie algébrique; Surface torique; Surface de Hirzebruch; Corps fini; Points rationnels; Théorie des codes; Codes correcteurs d'erreurs; Protocole de récupération d'information privée; Algebraic geometry; Toric surface; Hirzebruch surfaces; Finite field; Rational points; Coding theory; Error correcting codes; Protocol of private information retrieval

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nardi, J. (2019). Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30051

Chicago Manual of Style (16th Edition):

Nardi, Jade. “Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed March 29, 2020. http://www.theses.fr/2019TOU30051.

MLA Handbook (7th Edition):

Nardi, Jade. “Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory.” 2019. Web. 29 Mar 2020.

Vancouver:

Nardi J. Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2020 Mar 29]. Available from: http://www.theses.fr/2019TOU30051.

Council of Science Editors:

Nardi J. Quelques retombées de la géométrie des surfaces toriques sur un corps fini sur l'arithmétique et la théorie de l'information : Some applications of the geometry of toric surfaces over a finite field for arithmetic and information theory. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30051


Leiden University

28. Visse, H.D. Counting points on K3 surfaces and other arithmetic-geometric objects.

Degree: 2018, Leiden University

 This PhD thesis concerns the topic of arithmetic geometry. We address three different questions and each of the questions in some way is about counting… (more)

Subjects/Keywords: Rational points; K3 surfaces; Serre's problem; Conic bundles; Circle method; Brauer groups; Kummer surfaces; Effective computations; Rational points; K3 surfaces; Serre's problem; Conic bundles; Circle method; Brauer groups; Kummer surfaces; Effective computations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Visse, H. D. (2018). Counting points on K3 surfaces and other arithmetic-geometric objects. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/67532

Chicago Manual of Style (16th Edition):

Visse, H D. “Counting points on K3 surfaces and other arithmetic-geometric objects.” 2018. Doctoral Dissertation, Leiden University. Accessed March 29, 2020. http://hdl.handle.net/1887/67532.

MLA Handbook (7th Edition):

Visse, H D. “Counting points on K3 surfaces and other arithmetic-geometric objects.” 2018. Web. 29 Mar 2020.

Vancouver:

Visse HD. Counting points on K3 surfaces and other arithmetic-geometric objects. [Internet] [Doctoral dissertation]. Leiden University; 2018. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/1887/67532.

Council of Science Editors:

Visse HD. Counting points on K3 surfaces and other arithmetic-geometric objects. [Doctoral Dissertation]. Leiden University; 2018. Available from: http://hdl.handle.net/1887/67532

29. Kaplan, Nathan. Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory.

Degree: PhD, Mathematics, 2013, Harvard University

The goal of this thesis is to apply an approach due to Elkies to study the distribution of rational point counts for certain families of… (more)

Subjects/Keywords: Mathematics; Coding Theory; del Pezzo Surface; Finite Fields; Rational Points; Weight Enumerator

…is to count rational points on varieties directly. This gives information about the… …that has (q n − 1)/(q − 1) Fq -rational points. Therefore the weight… …keep track of more information about a code to draw conclusions about rational points. We… …This tells us about the counts for rational points on complete intersections of codimension 2… …the two roots are Fq -rational or a pair of Galois-conjugate points defined over Fq2 . All… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaplan, N. (2013). Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124839

Chicago Manual of Style (16th Edition):

Kaplan, Nathan. “Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory.” 2013. Doctoral Dissertation, Harvard University. Accessed March 29, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124839.

MLA Handbook (7th Edition):

Kaplan, Nathan. “Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory.” 2013. Web. 29 Mar 2020.

Vancouver:

Kaplan N. Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory. [Internet] [Doctoral dissertation]. Harvard University; 2013. [cited 2020 Mar 29]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124839.

Council of Science Editors:

Kaplan N. Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory. [Doctoral Dissertation]. Harvard University; 2013. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124839

30. Vera Piquero, Carlos de. Rational points on Shimura curves and Galois representations.

Degree: Departament de Matemàtica Aplicada II, 2014, Universitat Politècnica de Catalunya

 Aquesta tesi estudia una de les propietats aritmètiques essencials de les corbes de Shimura i els seus quocients d'Atkin-Lehner: l'existència de punts racionals en aquestes… (more)

Subjects/Keywords: Shimura curves; Atkin-Lehner quotients; Rational points; Hasse principle; Brauer-Manin obstruction; Galois representations; 51

…describing the set of rational points of an algebraic variety over a number field or a local field1… …complexity of X, but also influences the existence of rational points over K. When g = 0, for… …set X(K) of K-rational points on X inherits a structure of a finitely generated… …3 = 5. These curves have rational points locally everywhere, but fail to have global… …principal homogeneous spaces for Jac(X) which have Kv -rational points for all places v… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vera Piquero, C. d. (2014). Rational points on Shimura curves and Galois representations. (Thesis). Universitat Politècnica de Catalunya. Retrieved from http://hdl.handle.net/10803/284400

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vera Piquero, Carlos de. “Rational points on Shimura curves and Galois representations.” 2014. Thesis, Universitat Politècnica de Catalunya. Accessed March 29, 2020. http://hdl.handle.net/10803/284400.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vera Piquero, Carlos de. “Rational points on Shimura curves and Galois representations.” 2014. Web. 29 Mar 2020.

Vancouver:

Vera Piquero Cd. Rational points on Shimura curves and Galois representations. [Internet] [Thesis]. Universitat Politècnica de Catalunya; 2014. [cited 2020 Mar 29]. Available from: http://hdl.handle.net/10803/284400.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vera Piquero Cd. Rational points on Shimura curves and Galois representations. [Thesis]. Universitat Politècnica de Catalunya; 2014. Available from: http://hdl.handle.net/10803/284400

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.